(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VII. Pedia Sapiens: A Genesis Future on Earth and in the Heavens

C. An Earthropic Principle: Novel Evidence About a Special Planet

Milojevic, I. and S. Inayatullah. Futures Dreaming Outside and on the Margins of the Western World. Futures. 35/5, 2003. An argument that the vast genre of science fiction is largely written by white males who are preoccupied with war between binary opposites. Non-western, indigenous writers, especially women, are noted to be in search of alternative, less-combatant, holistically peaceful and creative visions.

Morbidelli, Alessandro and Sean Raymond. Challenges in Planet Formation. arXiv:1610.07202.. Universite de Nice Sophia-Antipoli, and CNRS, Laboratoire d'Astrophysique de Bordeau astrophysicists provide a latest update about how object worlds might have formed. As we report this active literature, an auspicious realization is that our own solar system is a rarest case (one in a thousand herein) with a relatively benign, long lived conducive order. A philosophical reflection ought to note how incredible it is that a global sapience can look back and reconstruct how this special planet and people came to be.

Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are: 1) the structure and evolution of protoplanetary disks; 2) the growth of the first planetesimals; 3) orbital migration driven by interactions between proto-planets and gaseous disk; 4) the origin of the Solar System's orbital architecture; and 5) the relationship between observed super-Earths and our own terrestrial planets. (Abstract)

The origin of planets is a vast, complex and still quite mysterious subject. Despite decades
of space exploration, ground based observations and detailed analyses of meteorites and cometary grains it is still not clear how the planets of the Solar System formed. The discovery of extrasolar planets has added confusion to the problem, bringing to light evidence that planetary systems are very diverse, that our Solar System is not a typical case and that categories of planets that don't exist in our system are common elsewhere (e.g. the super-Earth planets). (2)

Just like any individual person, the Solar System has its own history. The probability of any other planetary system following an identical blueprint is zero. But how typical was the Solar System's evolutionary path? Based on statistically-sound exoplanet observational surveys, the Sun-Jupiter system is special at roughly the level of one in a thousand. First, the Sun is an unusually massive star; the most common type of star are M dwarfs, with masses of 10-50% of the Sun's. Second, only 10% of Sun-like stars have gas giant planets with orbits shorter than a few to 10 AU. Third, only about 10% of giant exoplanets have orbits wider than 1 AU and eccentricities smaller than 0.1. Taken together, these constraints suggest the Sun-Jupiter system is a 0.1% case. The numbers quoted here are a simple order of magnitude, but they clearly illustrate that the Solar System is not a typical case in at least one regard: the presence and orbit of Jupiter. (20)

Morbidelli, Alessandro, et al. Topical Collection on the Delivery of Water to Proto-Planets, Planets and Satellites. Space Science Reviews. 214/7, 2018. Eleven editors including Sean Raymond and Helmut Lammer introduce a special issue with this title about the occurrence, locales, and quantities of life’s ultimate biochemical through galactic, solar and planetary ages. Click on the issue citation for papers such as The Importance of Water for Life by Frances Westall and Andre Brack, The Delivery of Water during Terrestrial Planet Formation by David O.Brien, et al, Water in the Earth’s Interior by Anne Peslier, et al, and Water in Extrasolar Planets and Implications for Habitability by Lena Noack, et al.

To stay with this vital aspect, see for example The Role of Deep-Earth Water Cycling in the Growth and Evolution of Continental Crust by Zhen Li, et al in Lithos (302-303/126, 2018), Origin of Earth’s Water by Jun Wu, et al in Journal of Geophysical Research: Planets (online October 2018), A Nearly Water-Saturated Mantle Transition Zone by Hongzhan Fei, et al in Sciences Advances (June 2017) and Exoplanet Science Priorities form the Perspective of Internal and Surface Processes for Silicate and Ice Dominated Worlds by Wade Henning, et al at arXiv:1804.05094. By these entries and more, a natural genesis ecosmos seems to be present on its independent own and innately vivified so as to give rise to life, evolutionary, intelligence, this global retrospect and our procreative continuation.

Murchie, Guy. The Seven Mysteries of Life. Boston: Houghton Mifflin, 1978. We restate here Guy Murchie’s thoughtful perception of bioplanet Earth as an embryonic superorganism.

Sixth is the germination of worlds, a critical event that seems to happen once to every celestial organism and, after her billions of years of slow evolution, is occurring right now to Earth, as evidenced by many fundamental changes during what we call modern times - things that, as far as we know, never happened before and can never happen again on our planet. (7)

Naganuma, Takeshi. An Astrobiological View on Sustainable Life. Sustainability. 1/4, 2009. A Hiroshima University, Graduate School of Biosphere Science, environmentalist, who could not be in a more appropriate place, imaginatively views matter, evolution and its human frontier as a vectorial vortex of thermodynamic energies. In regard, it is asked whether such knowledge from its collective humankind scale can come to a common fore to save and sustain us.

In the Japanese language, the Sun is hi, and heat (fire) is also hi (originally ho or fo); water is mi or mizu; and, life is i-no-chi meaning energy of breath. The coincidence of two hi has impressed me, and I might say that split of mi by hi nourishes chi, at least, on the Earth. Both hi, that is the Sun’s radiation and the Earth’s interior heat, contribute to life. The degrees of contributions vary according to major modes of autotrophy, i.e., photosynthesis or chemolithoautotrophy. Examples of chemolithoautotrophic communities that depend primarily on geothermal hi are found in deep-sea hydrothermal vents and deep subsurface, respectively [4,5]. The idea that non-solar splitting of water nourishes life thus derives from the studies of deep-sea and deep subsurface biospheres, and is extended to possible extra-terrestrial biospheres. The concept of planetary biospheres should accommodate a more universal notion of life than traditional ones. The “non-solar splitting of water” idea is applicable to possible astrobiological biospheres. (835-836)

Novacek, Michael. Terra. New York: Farrar, Straus, and Giroux, 2007. Our 100-Million-Year-Old Ecosystem – And The Threats That Now Put It at Risk is the subtitle for this call to aware action by the Provost of Science at the American Museum of Natural History. If the present global environmental precariousness is seen in this expansive view of an evolutionary biosphere reaching closure via human proliferation, then our consequent remediation, or lack thereof, becomes even more significant. Novacek does not mince words and entitles a chapter A Waste of a World. Pierre Teilhard de Chardin, along with Vladimir Vernadsky and Antonio Stoppani, are mentioned as originators of this vista of a radically novel, and now penultimate epoch, variously known as Holocene or Anthropocene. It occurred that two future paths might hence be taken – Terra or Terror. Are we to be engulfed in a tsunami of ignorance, violence, and consumption or could somehow the inconvenient, intentional care and furtherance of a sustainable Earth Community, become a 21st century mission of numinous essence.

Ono, Yoko. My Friends. New York Times. December 28, 2003. A full page placement with these few lines of Yoko Ono’s New Year sentiments and advice for a distraught and percipitous world.

Pilat-Lohinger, Elke. The Role of Dynamics on the Habitability of an Earth-like Planet. International Journal of Astrobiology. 14/2, 2015. In an Exoplanet issue, a University of Vienna astrophysicist reaches a notable conclusion about our own solar system. It seems especially conducive because the orbital planets all lie in the same plane, and have basically circular orbits. Such a relative stability over a long time period is most favorable for a suitable biosphere upon which life can evolve and emerge to a noosphere able to observe itself and a planetary neighborhood.

Ramirez, Rodrigo, et al. New Numerical Determination of Habitablility in the Galaxy. International Journal of Astrobiology. Online March, 2017. Universidad Nacional Autonoma de Mexico and Instituto de Estudios Avanzados de Baja, California astrophysicists finesse quantifications of the relative galactic and cosmic occurrence of planetary life. While rudimentary organisms may likely proliferate, a global evolution of technological civilizations may be less common and hardly detectable.

Raymond, Sean. Sculpting Our Planetary System. American Scientist. September-October, 2018. In an issue on the many ways that Big Data/AI methods are bringing new capabilities to astronomical studies, a Laboratoire d’ Axtrophysique de Bordeaux researcher describes a novel, quite chaotic picture of how orbital worlds and solar systems form and evolve. Our familiar, orderly array, which was long taken as a norm, now seems a rare benign state as we learn about a usual crush of super-Earths, gas giants and rocky worlds in wildly shifting transits. See also by Formation of Terrestrial Planets by Raymond and Andre Izidoro at arXiv:1803.08830 and The Excitation of a Primordial Cold Asteroid Belt as an Outcome of the Planetary Instability by their group (1808.00609). The issue contains many entries from computations and astrochemistry to gravity waves and exoplanets.

The discovery of thousands of planets orbiting other stars has given us three surprising insights about our Solar System. First, we are weird: Our Solar System is a 1-in-2,000 rarity. Second, planet formation is a dynamic process, characterized by large-scale orbital drift as well as violent collisions and the ejection of young planets into interstellar space. Lastly, the second point may explain the first one—that is, how our Solar System formed is likely the root cause of our weirdness. (280)

Raymond, Sean, et al. Solar System Formation in the Context of Extra-Solar Planets. arXiv:1812.01033. Senior astrophysicists SR, University of Bordeaux, Andre Izidoro, Sao Paulo State University and Alessandro Morbidelli, University of Nice (search each) post a strongest analysis to date that our home Earth-Sun spatial and temporal array seems to be a rarest long term orderly, benign, conducive milieu for life to evolve and develop to a personsphere intelligence able to reach this auspicious conclusion. At the cusp of 2020, here is an incredible finding in our midst with implications for the fate and future not only of a geonate EarthKinder, but on to a self-chosen Ecosmos.

Exoplanet surveys have confirmed one of humanity's worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? We argue that most Earth-sized habitable zone exoplanets are likely to form much faster than Earth, with most of their growth complete within the disk lifetime. Their water contents should span a wide range, from dry rock-iron planets to water-rich worlds with tens of percent water. Jupiter-like planets on exterior orbits may play a central role in the formation of planets with small but non-zero, Earth-like water contents.

We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiter's core must have formed fast enough to quench the growth of Earth's building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiter's wide orbit. The giant planets' instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our solar system is thus the outcome of multiple unusual, but not unheard of, events. (Abstract)

The discovery of extra-solar planets demonstrated that the current Solar System-inspired paradigm of planet formation was on the wrong track. Most extra-solar systems bear little resemblance to our well-ordered Solar System. While the Solar System is radially segregated, with small inner rocky worlds and more distant giant planets, few known exo-systems follow the same blueprint. Models designed with the goal of reproducing the Solar System failed spectacularly to understand why other planetary systems looked different than our own. (1)

Rees, Martin. Is There Life Beyond Earth? New Scientist. July 12, 2003. More considerations by the Cambridge University astronomer about the future options and august purpose for an integral earthkind in the universe.

More time lies ahead than has elapsed in the entire course of biological evolution. In those aeons, Earth could be the “seed” from which post-human life spreads through the galaxy. The fate of humanity could then have an importance that is truly cosmic: what happens here might conceivably make the difference between a near eternity filled with ever more complex and subtle forms of life and one filled with nothing but base matter. (27)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next