(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

I. Our Planatural Edition: A 21st Century PhiloSophia, Earthropo Ecosmic PediaVersion

C. An Earthumanity Era: A 2020s Cerebral Cyberspace Achieves a Worldwise Knowsphere Resource

Plotnitsky, Arkady and Emmanuel Haven, eds. The Quantum-Like Revolution: A Festschrift for Andrei Khrennikov. Online: Springer, 2023. A Purdue University physicist and a Memorial University, Canada economist gather a steady flow of frontier, innovative papers by the Russian polyscientist presently at the International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, Sweden. Search AK on the arXiv.org eprint site for some 321 results. A main theme of his expansive thought is to explain how quantum phenomena is similarly evident in many seemingly far-removed areas. For a latest paper see Open Systems, Quantum Probability, and Logic for Quantum-like Modeling in Biology, Cognition, and Decision-Making in Entropy (25/6, 2023, also 2306.08599)

Over the last ten years, the malleable formalism of quantum-like models are broadly applied in areas such as psychology, cognition, economics, political science, and molecular biology. This Festschrift honors a key figure in this field: Andrei Khrennikov, who made momentous contributions to both quantum foundations and these expansions. But the volume orients its reader more toward the future. Khrennikov’s luminous, frontier advances have well established the great promise of quantum and quantum-like thinking across an interdisciplinary 21st century synthesis of classical phases and the physical foundations that they manifestly arise from and exemplify. (Book)

The aim of this review is to highlight the possibility of applying the mathematical formalism and methodology of quantum theory to model behavior of complex biosystems, from genomes and proteins to animals, humans, and ecological and social systems. Such models are known as quantumlike, and they should be distinguished from genuine quantum physical modeling of biological phenomena. One of the distinguishing features of quantum-like models is their applicability to macroscopic biosystems or, to be more precise, to information processing in them. (AK article)

Ravn, Ib. Beyond Chaos and Rigidity, Flexstability. New Ideas in Psychology. August, 2022. As peoples and cultures world over become so polarized between such dual archetypal opposites, persuasions or fixations, a senior Aarhus University, Danish School of Education psychologist proposes an evident (once and future) middle way integrative unity. See also similar suggestions such as tradition and innovation by Jagiello, Heyes and Whitehouse, and participants and socialism by Thomas Piketty. In our regard, an active balance of conserve/create, regress/progress, particle/wave, war/peace, me individual/We society on every scale and instance can viably ensue. mitigate and resolve.

But in the USA, a new phase of violent conflict now looms. On a global scale, nuclear weapons are rattled between America (individualist) and Russia/China (communal). Yet it boggles that no one can see the fierce split is obviously between nature’s ecsomic, gender-like complements. The US senate vote on the climate bill was 50/50 as Republicans to a man went against. The South Korea flag is graced with a yin/yang Tao symbol as war games go on against the North. We are cutting it too close, how can this perennial family image ever be realized.

Chaos and rigidity are often used to describe problematic psychological states. If they are to be avoided, how does one conceive of a normative alternative? This paper proposes that underlying chaos and rigidity are two dimensions of healthy human experience, those of stability (focus, routine, unity) and flexibility (exploration, novelty, diversity). This essay proposes an optimal, unified state of “flexstability” in which individuals experience both flexibility and stability at the same moment. Chaos can be now understood as flexibility without stability, and rigidity as stability without flexibility. We apply this option to seven research areas in psychology: parenting styles, identity formation, development of mind, flow, creativity, emotional regulation and self-determination. (Abstract)

The main contribution offered here is the point that chaos and rigidity may be seen as expressions of a deeper dynamic, that of forms guiding human activity in ways more or less flexible and stable, producing more or less chaos and rigidity. The alternative that suggests itself, the state of flexstability, is proposed as a way of characterizing and envisioning a more appropriate alternative than any half-way house between rigidity and chaos. Viable human development efforts should not succumb to the logics of either-or or more-or-less when a logic of both-and is so readily available. (8)

Safron, Adam, et al. Making and Breaking Symmetries in Mind and Life. Interface Focus. April, 2023. Johns Hopkins University, SUNY Stony Brook, McGill University, Monash University and Tufts University (Michael Levin) introduce and edit an eclectic collection as a thematic essence that mindful behaviors provide a heretofore undervalued formative force. A broad sample of entries include Reflections on the Asymmetry of Causation by Jenann Ismael; On Bayesian Mechanics: A Physics of and by Beliefs by Maxwell Ramstead, et al; Embodied cognitive morphogenesis as a route to intelligent systems by Bradley Alicea, et al, As Without, So Within: How the Brain’s Temporal-Spatial Alignment Shapes Consciousness by Georg Northoff, et al; Emergence of common concepts, symmetries and conformity in agent groups by Marco Moller and Daniel Polani.

Symmetries appear throughout the natural world, making them important in our quest to understand the world around us.. The study of symmetries is so fundamental to mathematics and physics that one might ask where else it proves useful. This theme issue poses the question: what does the study of symmetry, and symmetry breaking, have to offer for the study of life and the mind? (Excerpt)

Sagan, Dorion. From Empedocles to Symbiogenesis: Lynn Margulis’s Revolutionary Influence on Evolutionary Biology. Biosystems. June, 2021. We cite this latest essay as a succinct record of her valiant endeavor to break out of old male fixation into a vital sense of an animate procreation graced by a universal principle of positive, reciprocal conciliations between all phases of organic entities. Yet we have a world tearing itself apart due to violent oppositions, which is in desperate need for such a unifying scientific vision. I have heard and met Lynn in Amherst, in my opinion she could merit being the one woman who could rise to the status of a Newton or Darwin.

As a primary expositor of the work of Lynn Margulis collaborating with her over thirty years on over thirty books and forty articles, scientific and popular, I attempt here to summarize her unique and lasting influence on evolutionary biology. Describing life on Earth as the multi-billion-year evolution of microbial communities, from prokaryotes maintaining Earth's atmosphere away from thermodynamic equilibrium to all eukaryotes as polygenomic beings, Margulis's interdisciplinary work has deeply influenced multiple fields including systematics, theories of the evolution of metabolism, paleobiology, and biogeochemistry. Overturning the neo-Darwinist narrative that speciation almost always occurs by the gradual accumulation of random mutations, Margulis's work revives a discarded philosophical speculation of the pre-Socratic Empedocles, who suggested that Earth's early beings both merged and differentially reproduced. Margulis's curiosity-driven science, collaborative work ethic, status as a woman, embrace of novelty, philosophical stance, current status of her theories, and the proposal for a new science of symbiogenetics are among the topics examined. (Abstract excerpt)

Sanchez-Puig, Fernanda, et al. Heterogeneity Extends Criticality. arXiv.2208.06439. In August 2022, a five person team with postings at the Universidad Nacional Autonóma de México, Microsoft, Redmond, Aalto University, Finland and far afield including Carlos Gershenson achieve a significant advance toward identifying how and why a middle way poise between a relative more or less order seems to be nature’s optimum preference. As the quotes cite, while equilibrium, homogeneous conditions are widespread, many animate, cerebral and environmental situations exist in and benefit from a dynamic, non-equilibrium or heterogeneous mode. In technical terms, these tendencies are dubbed a self-organized criticality, aka chimera states. The paper makes a major point that such a phenomenal distinction, along with other reasons, can well explain this “sweet spot” universality that complex network systems from galactic clusters to communal groupings tend to seek and at best achieve.

But as we enter Autumn 2022, while these scientific findings converge as an epochal Earthuman synthesis, world political cultures, especially the USA, are a tragic aberration as the dual modes remain in polar, violent, opposition. By what cognitive imagination, say a Sophia, whole brain/mind sapiens, could ever these academic and public segments come together as me + We + US and turn to a better, hopeful future? See also Temporal Heterogeneity Improves Speed and Convergence in Genetic Algorithms at (2203.13194) and Temporal, Structural and Functional Heterogeneities Extend Criticality and Antifragility in Random Boolean Networks by this team at 2209.07505 by this collegial team.

Criticality states have been proposed as vital for the emergence of complexity, life, and computation, as it exhibits a balance between order and chaos. In classic models of complex systems where structure and dynamics are considered homogeneous, criticality is restricted to phase transitions. Many real-world complex systems, however, are not homogeneous as elements change in time faster than others, with slower main elements providing robustness, and faster ones being adaptive. Connectivity patterns are likely heterogeneous with few elements and many interactions. Our studies well support this distinction and the ubiquitous presence of heterogeneity across physical, biological, social and technological systems. (Abstract)

Phase transitions have been studied to describe changes in states of physical matte. They have also been more widely studied in dynamical systems such as vehicular traffic and are associated with scale invariance and complexity. Several examples of criticality in biological systems are neural activity, genetic regulatory networks, and collective motion. It is often argued that they are prevalent or desirable because they offer a balance between robustness and adaptability. If dynamics are too ordered, then information and functionality can be preserved, but it is difficult to adapt. The opposite occurs with more chaos: change allows for adaptability, but also leads to fragility and information loss. Thus, altogether for life, computation, and complex systems in general, critical dynamics should be favored by evolutionary processes. (1-2)

Sarkanych, Petro, et al. Network Analysis of the Kyiv Bylyny Cycle – East Slavic Epic Narratives. arXiv:2203.10399. This March 19 entry could not be more timely to an extent that our review could illume the historic, 20th to 21st century, homo to Earthropo sapience, complex network science ecosmic revolution. The authors are PS, and Yurij Holovatch (search) Doctoral College for the Statistical Physics of Complex Systems, National Scientific Academy of Ukraine; Nazar Fedorak, Ukrainian Catholic University; Padraig Maccarron, University of Limerick, Ireland; Josef Yose and Ralph Kenna (search) Coventry University, UK. With their veteran erudition, they bring a scholarship which can allow, perceive and verify a thousand heroic versions of gore and glory (little love) which yet hold to and manifest a common, fractal-like storyline with an array of iconic characters. But as March madness carnage engulfs Lviv, an ancient treasure, such an Earthuman learning, thinking faculty whom can witness these integral patterning is still unknown. For such reasons, we remain unable to add the evident presence of an independent, universal mathematic source code in genetic effect.

See also Narrative Structure of A Song of Ice and Fire Creates a Fictional World with Realistic Measures of Social Complexity by this open Eurasia group and Robin Dunbar, in PNAS (117/46, 2020), and Analysing International Events through the Lens of Statistical Physics: The Case of Ukraine by Massimiliano Zanin and Johann Martinez at 2203.07403.

A long contrast across still dark ages might become newly apparent. These ethnic, regional mythic tales represent our initial human encounters with and expressions of this dramatic, perilous, veiled existence. Many centuries later, an emergent Earthuman acumen and vista can now achieve a retrospective survey. But a consequent ecosmic revolution to an organic natural genesis has not yet been recognized. In this regard, a common, genetic-like astronomic to geonomic code from which the fractal fictions arise and are structured by can provide their natural authorship.

Apropos, I heard Joseph Campbell speak in 1964 at the Cooper Union forum in downtown NYC. (It was noted on the same floor boards that Abraham Lincoln stood a century earlier.) With his learned flourishes he regaled us with “heroic” sagas which could be seen to have a constant, thematic core. I can recall that he went on to say that a moment has long been ordained when the mysteries are to be opened and made clear to us. Some six decades on, might we late peoples be able to allow, imagine, and fulfill such a promise. Please see human-uniVerse, Family Ecosmos writings in the lead Great Earth 2022 essay.

Since the pioneering work of Joseph Campbell in the 1960's, universality emerged as an important qualitative notion in the field of comparative mythology. In recent times, the advent of network science permitted new quantitative approaches to literary studies. Here we bring the Kyiv bylyny cycle into the field -- East Slavic epic narratives originating in modern-day Ukraine. By comparison to other European epics, we can novel commonalities of social networks in bylyny. We analyse community structures and rank important characters. The method can define the solar position of Prince Volodymyr and show how the Kyiv cycle has affinities wih narrative networks from similar national tales. Besides new narratological insights, we hope this study will aid scholars and peoples to better appreciate Ukraine's heroic history. (Abstract excerpt) (We ought to notice that Putin’s brave adversary, the Ukrainian president is named Volodymyr.)

Many countries refer to iconic characters from the mythological or historical past. In his recent essay, “On the Historical Unity of Russians and Ukrainians”, V. Putin invoked the distant past when he said ”The spiritual choice made by St. Vladimir, the Grand Prince of Kiev, still stands today” such that “the idea of Ukrainian people as a nation separate from the Russians [has] no historical basis.” Putin’s erroneous view has been refuted in multiple quarters. The historian Timothy Snyder says of Putin: “He considers himself the second Volodymyr, and sees his task as completing his work.” However, as we note here, Prince Volodymyr is a solar character connected with people of different opinions. As for the heroic Ukarian bylyny cycle, we hope that a new narrative will become centered on a free and peaceful Kyiv. (17, 18)

Scharf, Caleb and Olaf Witkowski. Rebuilding the Habitable Zone from the Bottom Up with Computational Zones. arXiv:2303.16111. CS is now at NASA Goddard (see below, search) and OW is a University of Tokyo astrobiologist who introduce and exercise an array of novel insights about an essential nature of life and beingness, broadly conceived, so as to better find, perceive and understand. We offer these several quotes.

Computation, if treated as a set of physical processes that act on information represented by states of matter, encompasses biological, digital and other phases, and may be a fundamental measure of living systems. The opportunity for biological computation, via the propagation and selection-driven evolution of information-carrying organic molecular structures, has so far been applied to planetary habitable zones with conditions such as temperature and liquid water. Here a general concept is proposed by way of three features: capacity, energy, and substrate. (Excerpt)

Computational zones (CZ) are a natural generalization of the idea of habitable zones and can combine traditional approaches to habitability: including factors such as the liquid water HZ, free energy availability, elemental and chemical availability, historical contingency and the preexistence of living systems. Furthermore, while the classical notion of habitability is largely a ‘yes’ or ’no’ environmental division, computational zones may be almost indefinitely extensible, but will be modulated by energy availability and energy efficiency, along with total computational capacity as a property of the conditions of matter. (3-4; for example)

Shifting focus towards the piecewise processes of matter involved with life, articulated as computation, offers a natural way to move beyond the traditional concept of an astrophysical (or geophysical) habitable zone, towards a more universal and predictive framework. (22) Computation is robust yet constrained in our universe. Understanding and quantifying those constraints through the computational zones approach proposed in this paper may provide new clarity in the search for living systems, even in the event of them taking very different form. (23)

Caleb Scharf received his B.Sc. in physics from Durham University, and his Ph.D. in astronomy from the University of Cambridge. He did postdoctoral work in X-ray observational cosmology at the NASA Goddard Space Flight Center and the Space Telescope Science Institute in Maryland. For some years he was at Columbia University and director of the Columbia Astrobiology Center. In 2022 he returned to NASA as a Senior Scientist for Astrobiology at the Ames Research Center.

Sharma, Abhishek et al.. Assembly theory explains and quantifies selection and evolution. Nature. October 4, 2023. After a series of prior drafts (search authors), life origin theorists from the University of Glasgow, SFI and ASU including Sara Walker and Leroy Cronin scope out a robust proposal for how the whole temporal process from universe to us might just have occurred. But a serious impediment is that it is seen to begin and proceed, as the abstract cites, without any inherent physical source or purposeful direction. In our public record, we next cite a number of pro and con entries.

Ball, Philip. A New Idea for How to Assemble Life. Quanta. May 4, 2023; Assembly Theory Explains and Quantifies the Emergence of Selection and Evolution by A. Sharma, (2206.02279); Zenil, Hector, et al. On the Salient Limitations of the Methods of Assembly Theory. (2210.00901) and Multimodal Techniques for Detecting Alien Life using Assembly Theory by Michael Jirasek and Leroy Cronin at 2302.13753.

Scientists have long tried to reconcile biological evolution1 with the immutable laws of the Universe defined by physics. These laws underpin life’s origin, evolution along with human culture, yet do not entail these phenomena. To comprehend how diverse, open-ended forms can arise from physics without a design blueprint, a new approach to understanding selection is necessary. We present an Assembly Theory method with physical basis, but does not view point particles, but entities defined by their formation histories. This approach enables us to add novelty generation into complex objects. By a concept of matter within assembly spaces, AT provides a unique interface between physics and biology. (Abstract)

Shettigar, Nandan, et al. On the Biophysicsl Complexity of Brain Dynamics. Dynamics. 2/2, 2022. Texas A & M University bioengineers led by Steve Suh (see website) post a 35 page, 245 reference latest review of our human cerebral faculty as it has now become quantified and understood by way of network multiplex topologies, information process capacities and a preferred self-organized criticality. A typical topic is Complex Global Multimodal Synchronization from Local Nonlinear Interactions. As the quotes allude, two decades into the 21st century, our personal cognitive endowment is found to organize itself so as to think and learn in a wild world. In regard, our emergent acumen (as well as our own selves) can be appreciated as an iconic exemplar of the whole genesis ecosmos from which it arose from.

By this stratified witness the same neural cognizance could be seen in effect as a global sapiensphere may just come to her/his own knowledge. For a current 2022 discovery event section, we pair this entry with Self-Organized Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological and Social Networks by B. Tadic and R. Melnik (herein) as prime, quantitative examples in our urgent midst.


The human brain is a complex network ensemble of the cumulative interactions of its cellular components by way of nonlinear multicellular higher-order collaborations. Thus, as a statistical physical system, complex global emergent network behaviors are produced which enable the highly dynamical, adaptive, and efficient response of a macroscopic brain network. These effects emerge in local synchronized clusters which altogether form a collective organization with hierarchical and self-similar structures. Here, we will provide an overview perspective from a biological and physical complex network basis along with their exemplary presence in all manner of cerebral forms and functions. and how these operate within the physical constraints of nature. (Abstract excerpt)

Thus, the brain can be conceptualized as a complex information processing unit, molding its neural physiology as an analog neural network. Processing information through a medium of intricately coupled local action potential interactions, neural circuitry orchestrates interactions across the hierarchical scales of the brain, which combine individual action into collective group order. The latter is typically seen in overall brain activities and behaviors and can be quantified by multiphase, multiscale structures. (19)

The brain refines a finite number of network configurations using a canonical, self-similar pattern and structure across its temporal and spatial scales. This directly corresponds to the statistically self-similar fractal nature of the brain. Self-similarity across the multivariate scales of the brain is therefore essential in supporting efficient dynamical transitions by directing chaotic bifurcations in its own hierarchical structure to effectively filter information throughout the scales of the brain while conserving resources through a self-similar organization. (26)

Global neural activity is not random but highly ordered due to hierarchical structures. Their recursive implementation from the micro to macro scales allows the brain to produce complex information representations via neural dynamics so to enable performan a wide range of activities. These forms entail self-similarity so to optimize energy consumption and maintain a balance between stable and flexible states. Moving towards a more general step, effectively administering control of the complexity present in the brain can also provide insights towards the nature of complexity in our universe. (27)

Sormunen, Silja, et al. Critical Drift in a Neuro-Inspired Adaptive Network. arXiv:2206.10315. After some years of worldwide study, SS and Jari Saramaki, Aalto University, Finland, along with Thilo Gross, University of Oldenburg, Germany agree, that cerebral activities do in fact seek and reside at a preferred self-organized poise. As the Abstract notes, it is now time to consider and explore the full operational, cognitive presence of this optimum feature. Our Universal Genesis view in mid 2022 might then report similar realizations from astrophysical realms to bicameral societies. A glimpse of an intrinsic self-organized criticality, aka nature’s complementary sweet spot, could begin to grace and advise these traumatic times.

It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has been depicted as a one-dimensional process, mainly with a single parameter tuned to a critical value. However, the number of adjustable facets in the brain is vast, and hence critical states can occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, poised between inactivity and persistent activity. During the occasion, global network parameters continue to change while the system remains at criticality. (Abstract)

Tadic, Bosiljka and Roderick Melnik. Self-Organized Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological and Social Networks. Dynamics. 2/2, 2022. Senior theorists in Solvenia and Canada (see bio’s below and home websites) provide a select, consummate survey of 21st century worldwise multiplex non-equilibrium system studies as they may reach their current convergent, integrative syntheses across every spatial and temporal, uniVerse to humanVerse, domain. We pair the entry with On the Biological Complexity of Brain Dynamics by N. Shettigar, et al in this issue so as prime instances of a epochal discovery event in our midst. Herein the emphasis is on novel findings about nature’s consistent propensity to seek and reside at an optimum mid-point balance between more or less relative coherence. The paper reviews technical attributes such as self-similarity, power laws, multifractal landscapes, simplicial networks, collective behaviors and all else. As one reads along, the text reiterates the cerebral descriptions in the other paper. That is to say, our Earthropocene sapience, as it learns and thinks on its own, can has well found and defined the presence of a familial genetic-like code which universally recurs in kind everywhere.

Studies of many complex systems have revealed new collective behaviours that emerge through the mechanisms of self-organised critical fluctuations. These collective states with long-range spatial and temporal correlations often arise from an external dynamic drive with an intrinsic nonlinearity and geometric interactions. The self-similarity of critical fluctuations enables us to describe natural systems using fewer parameters and universal functions that can then simplify the computational and information complexity. Current research on self-organised critical systems across many scales strives to formulate a unifying mathematical framework by way of critical universal properties in information theory. Through physical, biological, and social network exemplars, we show how a constant self-organised criticality occurs at the interplay of the complex topology and driving mode. (Abstract excerpt)

This feature article has two goals. Firstly, we give a brief survey of a diversity of current research trends of SOC systems across different scales and types of interactions. Secondly, we present new results on the field-driven spin dynamics in complex nano-networks, an appearing prominent example of SOC behaviour induced by the substrate’s geometry. Using several representative examples of SOC systems of different nature and interaction patterns, we highlight some fundamental aspects of the dynamic complexity. (3)

The SOC occurs in many complex systems and networks at various scales, types of interactions, and intrinsic dynamics. They all obey some universal behaviours that can be captured by the properties of the emergent critical states. These are the long-range correlations, fractality, avalanching dynamics and scale invariance. It has been understood that these properties of the critical states can provide a deeper understanding of different aspects of complexity. In particular, recent research on various SPA models and real-world systems strives to underpin self-organised critical behaviour in the mechanisms underlying the emergence of new collective features, essential for the physical and biological complexity. They also provide a more transparent structure of information stored in the critical state and reduced computational complexity. In the context of complexity, understanding the role of various geometrical constraints in the critical dynamics and hidden geometry features that enable competing interactions at different scales are of paramount importance. (13-14)

Bosiljka Tadic is a theoretical physicist at the Jozef Stefan Institute, Ljubljana who researches the intrinsic nature of complex systems and networks. Her studies involve the statistical physics of cooperative phenomena from functional brain networks to emotional behaviors in Internet societies. In regard, she has published over 120 technical papers.

Roderick Melnik is internationally regarded for his work in applied mathematics, and numerical analysis and a Canada Research Chair in Mathematical Modeling and Professor at Wilfrid Laurier University. He was born in the Ukraine and earned his doctorate at the National University of Kyiv. (I was unaware of his bio as I chose to highlight the paper, which is so appropriate for this knowledge vs. madness moment.)

Teuscher, Christof. Revisiting the Edge of Chaos: Again?.. Biosystems. May, 2022. The veteran Portland State University systems theorist looks back over the course of this perception all the way to Stuart Kauffman’s autocatalysis whereof life prefers to seek and reside at an active poise between more or less order. Albeit along the way there were doubts, problems and variations, but it can indeed once more be affirmed that this optimum balance does seem to be in prevalent effect across much natural and social phenomena. Which into 2022, with L. da Costa and myriad other confirmations, would constitute an epochal, salutary discovery.

Does biological computation happen at some sort of “edge of chaos”, a dynamical regime somewhere between order and chaos? And if so, is this a fundamental principle that underlies self-organization, evolution, and complex natural and artificial systems that are subjected to adaptation? In this article, we will review the literature on the fundamental principles of computation in natural and artificial systems at the “edge of chaos”. The term was coined by Norman Packard in the late 1980s. Since then, the concept of “adaptation to the edge of chaos” was demonstrated and investigated in many fields where both simple and complex systems receive some sort of feedback. Besides reviewing both historic and recent literature, we will also review critical voices of the concept. (Excerpt)

Previous   1 | 2 | 3 | 4 | 5 | 6  Next