(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 61 through 74 of 74 found.


WumanKinder: An EarthSphere Transition in Individuality

wumanomics > Integral Persons > Cerebral Form

Dresp-Langley, Birgitta. Seven Properties of Self-Organization in the Human Brain. Big Data and Cognitive Computing.. 4/2, 2020. In this MDPI online journal, a CNRS University of Strasbourg, France research director provides an extensive survey of how nature’s proclivity to organize itself so distinguishes our cerebral development and cognitive abilities.

The principle of self-organization has become a significant part of the emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology, medicine, ecology, and sociology. In regard, there are (at least) seven key properties of self-organization identified in brains: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) resiliency, 5) plasticity, 6) local-to-global arrangement, and 7) dynamic system growth. These are defined here via insights from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (S. Grossberg), and from physics to show that self-organization achieves functional stability and plasticity with minimum complexity. (Abstract excerpt)

wumanomics > Integral Persons > Cerebral Form

Papadimitriou, Christos, et al. Brain Computation by Assemblies of Neurons. Proceedings of the National Academy of Sciences. 117/14464, 2020. Veteran Columbia University, Georgia Tech, and Graz University of Technology computer scientists propose and discuss ways how the content of neural associations might be projected and traced all the way to thoughtful linguistic results.

Our expanding understanding of the brain at the level of neurons and synapses, and the level of cognitive phenomena such as language, leaves a formidable gap between these two scales. Here we introduce a computational system which promises to bridge this gap: the Assembly Calculus. It encompasses operations on assemblies of neurons, such as project, associate, and merge, which appear to be implicated in cognitive phenomena, and can be shown, analytically as well as through simulations, to be plausibly realizable at the level of neurons and synapses. We demonstrate the reach of this system by proposing a brain architecture for syntactic processing in the production of language, compatible with recent experimental results. (Significance)

wumanomics > Integral Persons > Conscious Knowledge

Velazquez, Jose Luis Perez. On the Emergence of Cognition: From Catalytic Closure to Neuroglial Closure. Journal of Biological Physics. 46/1, 2020. The systems neurophysician (search) now sited at the Ronin Institute posts an integral contribution so to admit and perceive a natural, ascendant primacy of informed consciousness. In regard, a neuronal synchrony of segregation and integration phases are seen to distinguish cerebral activity. A self-sustaining fluorescence is then traced from biochemistry to biobrains. See also Neuronal Compartmentalization by Renny Ng, et al in BioEssays (July 2020) for another view of an oriented cognitive development, and. Consciousness as an Emergent Phenomenon by Ramon Guevara, Diego Mateos and JLP Velazquez (Google title, names, June 2020).

In an analogous manner as occurred during the development of a connected metabolism that at some point reached what is called “life” ― due to a catalytic closure phenomenon when chemicals started to autocatalyze themselves into a linkage of chemical reactions ― it is here proposed that cognition and consciousness arose as a consequence of another type of closure within the nervous system. As proper brain function attains an efficient web of connections and a complexity of coordinated activities by cell networks, the emergent properties of cognition and consciousness occur. Seeking to identify main features of nervous system organization for optimal function, it is here proposed that while catalytic closure yielded life, it is the cerebral feature of neuroglial closure which produced cognition/consciousness. (Abstract edits)

wumanomics > Phenomenon > Physiology

Harvard Human Immunomics Initiative. Google key words. In the midst of the Coronavirus pandemic, this is an April 2020 Harvard School of Public Health project which seeks to foster global collaborations to gather, coordinate, study, test and advance the broad endeavor of effective vaccines. Frontier applications of AI and deep learning methods are a key feature. It is alluded that the result might ultimately act as a planetary immune system with better responses. For a companion effort, see Here’s How to Use Tech to Turn COVID-19 Tragedy into a Global Immune System (Google) on the Atlantic Council website. For complex system insights see Quantitative Immunology for Physicists by Gregoire Altan-Bonnet, et al in Physics Reports (Vol. 849, 2020, search). This site has also broached a Global Geonome component in the Cultural Code section

wumanomics > Phenomenon > Physiology

votsis, Athanasios and Riina Haavisto. Urban DNA and Sustainable Cities. Frontiers in Environmental Science. 7/4, 2019. We cite this entry because these Finnish Meteorological Institute, Helsinki geographers consider how a broadly conceived analog genetic-like source code may help explain many features of smaller and larger dynamic human habitations. See also A Model of Urban Evolution based on Innovation Diffusion by Juste Raimbault at arXiv:2004.15023 for similar views.

The concept of Urban DNA has served to describe how a set of growth parameters may encode the manner in which cities evolve in space and the forms they may assume. The five growth coefficients of the SLEUTH (Slope, Land-use, Exclusion, Urban, Transport, Hillshade) cellular automaton model of land use change are often seen as genetic in kind. It is also important to understand whether urban DNA classes relate to outcomes in terms of livability and sustainability. The results distinguish six such types of cities: multinodal, dispersed cities, with mixed outcomes; multinodal, contiguous, slow-growing; transport-oriented, dispersed, fast-growing; large, buzzy, constrained; dense, contiguous, fast-growing; and transport-oriented, contiguous, interactive cities. (Abstract excerpt)

The paper aims to develop a behavioral taxonomy of cities by discerning their urban DNA and exploring the performance of city types in a variety of livability and sustainability indicators and indices. (1-2) Urban (regional) DNA is an analogy to biological DNA: it consists of growth coefficients similar to how proteins compose biological DNA. The notion has found resonance in urban growth processes which encode rules that dictate how the repetition of elementary socio-spatial entities achieves certain urban forms and urban functions across scales. (3)

Pedia Sapiens: A New Genesis Future

Future > Old World

Xu, Chi, et al. Future of the Human Climate Niche. Proceedings of the National Academy of Sciences. 117/11350, 2020. International scholars from China, the UK, USA, Denmark and the Netherlands including Tim Lenton and Marten Scheffer point out that while anthropo sapiens has spread all over the Earth, the most inhabiting populations have confined themselves to narrower, defined zones. By this view, these preferred areas come under even more impact, constraint and imminent peril.

We show that for thousands of years, humans have concentrated in a surprisingly narrow subset of Earth’s available climates, characterized by mean annual temperatures around ∼13 °C. This distribution likely reflects a human temperature niche related to fundamental constraints. We demonstrate that depending on scenarios of population growth and warming, over the coming 50 y, 1 to 3 billion people are projected to be left outside the climate conditions that have served humanity well over the past 6,000 y. Absent climate mitigation or migration, a substantial part of humanity will be exposed to mean annual temperatures warmer than nearly anywhere today. (Significance)

Future > Old World > Climate

Cheung, Kevin and Ugur Osturk. Synchronization of Extreme Rainfall During the Australian Monsoon: Complex Network Perspectives. Chaos. 30/6, 2020. Macquarrie University and GeoForschungsZentrum, Potsdam systems environmentalists describe how network centrality measures such as degree and local clustering are suitable for and can be graphed unto active stormy weather.

Future > Old World > Climate

Ghil, Michael and Valerio Lucarini. The Physics of Climate Variability and Climate Change. Reviews of Modern Physics. Online March, 2020. Ecole Normale Superieure, Paris and University of Reading, UK geoscientists post an 86 page tutorial as dynamic geologic, oceanic and atmospheric phases become amenable to nonlinear analysis. Along the way, the presence of critical phases and transitions are indeed seen in effect. When this general endeavor began two decades ago, akin to quantum realms, weather and climatic phases seemed so intricate and intractable they would daunt any analytical attempt. As the first Abstract sentence states this worldwild realm is now included amongst nature’s universal recurrence. See also Stochastic Resonance for Non-Equilibrium Systems by V. Lucarini at arXiv:1910.05048.

The climate system is a forced, dissipative, nonlinear, complex and heterogeneous system out of thermodynamic equilibrium with a natural variability on many scales of motion in time and space. This paper reviews observational evidence on climate phenomena and governing equations of planetary-scale flow. Recent advances in the application of dynamical systems theory and nonequilibrium statistical physics are brought together help understand and predict the system’s behavior. These complementary views permit a self-consistent handling of subgrid-scale phenomena as stochastic processes, as well as a unified handling of natural climate variability and forced climate change. (Abstract)

Future > Old World > Climate

Selvam, Amujuri Mary. Self-Organized Criticality and Predictability in Atmospheric Flows: The Quantum World of Clouds and Rain. International: Springer, 2017. The senior physicist author is deputy director of the Indian Institute of Tropical Meteorology in Poona. As the quote says, the volume is a sophisticated, exemplary witness that even hyper-active complex weather phenomena can be found to reside in nature’s universally preferred state.

This book presents a new concept of General Systems Theory and its application to atmospheric physics. It reveals that energy input into the atmospheric eddy continuum, whether natural or manmade, results in enhancement of fluctuations of all scales, such as the high-frequency fluctuations of the Quasi-Biennial Oscillation and the El-Nino–Southern Oscillation cycles. These atmospheric flows then exhibit a self-organised criticality via long-range spatial and temporal correlations which manifest as fractal self-similar patterns with an inverse power law form. Since the probability distributions of amplitude and variance are the same, atmospheric flows exhibit quantum-like chaos. Long-range correlations inherent to power law distributions of fluctuations are identified as nonlocal connection or entanglement exhibited by quantum systems such as electrons or photons.

Future > New Earth > Mind Over Matter

Alsharif, Mohammed, et al. Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions. Symmetry. 12/4, 2020. An international team posted in Korea, Nigeria, Oman, Turkey, and Pakistan scope out this new hyper-dimensional worldwise knowledge transmission system. By order of magnitude advances and reach it promises ever faster speeds and content capacity. Once again, our premise is that this noosphere, conceived a century ago by V. Vernadsky and P. Teilhard, into the 21st century is manifestly coming to its (her/his) own knowledge and revolutionary discovery.

The standardization activities of fifth generation communications are clearly over and deployment has commenced globally. To sustain the competitive edge of wireless networks, industrial and academia synergy have begun to conceptualize the next generation of wireless systems (sixth generation, 6G) aimed at laying the foundation for communication needs of the 2030s. In support, this study highlights promising lines of research from the recent literature for the 6G project. Thus, this article will contribute significantly to opening new horizons for future research directions. (Abstract excerpt)

Future > New Earth > Mind Over Matter

Makey, Ghaith, et al. Universality of Dissipative Self-Assembly from Quantum Dots to Human Cells. Nature Physics. 16/7, 2020. A 15 member project at the National Nanotechnology Research Center and Institute of Materials Science, Bilkent University, Ankara, Turkey well quantifies nature’s deep autocatalytic, self-organizing propensities from quantum to organic cellularity. These constant processes across a wide domain is then seen to express a universal repetition in kind. The work merited a review Dissipate Your Way to Self-Assembly by Gili Bisker (Tel Aviv University) in the same issue. So at the same while that the Hagia Sophia (holy wisdom) is reverting back to a mosque, Turkish scientists, whose achievement is praised by a Jewish woman, contribute and look forward to a new common creation.

An important goal of self-assembly research is to develop a general methodology applicable to almost any material, from the smallest to the largest scales, whereby qualitatively identical results are obtained independently of initial conditions, size, shape and function of the constituents. Here, we introduce a dissipative self-assembly methodology demonstrated on a diverse spectrum of materials, from simple, passive, identical quantum dots (a few hundred atoms) that experience extreme Brownian motion, to complex, active, non-identical human cells (~1017 atoms) with sophisticated internal dynamics. Autocatalytic growth curves of the self-assembled aggregates are shown to scale identically, and interface fluctuations of growing aggregates obey the universal Tracy–Widom law. (Abstract)

Future > New Earth > Viable Gaia

Apostolopoulos, Yorghos, et al. Complex Systems and Population Health. Oxford: Oxford University Press, 2020. The editors are Texas A&M University, University of North Carolina and University of Houston public health scholars. This is the first volume to integrate complexity theory, methods and models and show its benefits to the now pan-important field of local, area-wide, national and planetary well-being and survival.

Future > Self-Selection

Haqq-Misra, Jacob, et al. Observational Constraints on the Great Filter. arXiv:2002.08776. We cite this entry by Blue Marble Space Institute, and NASA Goddard astroscientists becauses it identifies a bottleneck or check point that a planetary to cosmic civilization must successfully pass through. The abstract and quote discuss its various straits and where the certification barrier might be. It is then alluded that for an apocalyptic Earth-like bioworld, the critical condition may be whether the emergent transition to a unified personsphere progeny can be accomplished. In specific regard, our 2020 introduction is considers the presence of some kind of second singularity event.

The search for spectroscopic biosignatures with the next-generation of space telescopes could provide observational constraints on the abundance of exoplanets with signs of life. Current mission concepts that would observe ultraviolet to near-infrared wavelengths could place upper limits on the fraction of planets in the galaxy that host life. We note that searching for technosignatures alongside biosignatures would provide important knowledge about the future of our civilization. If technical civilizations are found, then we can increase our confidence that the hardest step in planetary evolution--the Great Filter--is probably in our past. But if we find life to be common but nothing else, then this would increase the likelihood that the Great Filter awaits to challenge us in the future. (Abstract excerpt)

Resolving the Great Silence (no one there) carries implications for the future of technological civilization on Earth. The apparent absence of extraterrestrials suggests that there is an improbable evolutionary step somewhere from the origin of life to galactic settlement. (Robin) Hanson (1998, mason.gmu.edu/~rhanson/greatfilter) called this the “Great Filter” for an inhibitory step in evolution. If the origin of life is rare, then this would explain the lack of abundant life on nearby planets, with the Great Filter in our past. But Hanson also pointed out that “evidence of extraterrestrials is likely bad news” because this would mean a Great Filter awaits in our future. If the galaxy were teeming with complex life, and even civilizations, then this would suggest that the evolution of life until today have been relatively benign. This means that the Great Filter is in our future, somehow with regard to our current technological state. (3, edits)

Future > Self-Selection

Reinhold, Timo, et al. The Sun is Less Active that Other Solar-like Stars. Science. 368/516, 2020. A seven person team with postings in Germany, Korea, and Australia find that our starry sun to have a relatively benign magnetic field compared to a majority of similar solar types. Since higher magnetic activity may be averse to habitability, here may still be another feature that favors our home Earth.

The magnetic activity of the Sun and other stars causes their brightness to vary. Here, we investigate how typical the Sun’s variability is compared with other solar-like stars. By combining 4 years of photometric observations from the Kepler space telescope with astrometric data from the Gaia spacecraft, we were able to measure photometric variabilities of 369 solar-like stars. Most of those with well-determined rotation periods showed higher variability than the Sun and are considerably more active. These stars appear nearly identical to the Sun except for their higher variability. (Abstract)

Previous   1 | 2 | 3 | 4 | 5