(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 76 through 90 of 112 found.


Earth Life Emergence: Development of Body, Brain, Selves and Societies

Earth Life > Sentience > Animal Intelligence

Marino, Lori and Debra Merskin. Intelligence, Complexity, and Individuality in Sheep. Animal Sentience. Vol. 4, 2019. This is a new journal all about creaturely sensitivities, along with practical, legal, ethical, sociological, and philosophical aspects. Biopsychologist Lori Marino is a biopsychologist was at Emory University and is now a leading advocate for this overdue reconception of how truly like human persons all manner of animals really are. Debra Merskin is a University of Oregon media scholar working to communicate these actual qualities so to improve the their treatment. (Temple Grandin has long had a similar mission.) Herein a species long viewed as sheepish is found to have an familiar array of emotional behaviors. See also in this journal, e.g., More Evidence of Complex Cognition in Nonhuman Species by Lesley Rogers (Vol.3, 2018) and Animal Sentience: The Other-Minds Problem by Stevan Harnad (Vol. 1, 2016).

Domestic sheep (Ovis aries) are among the earliest animals domesticated for human use. They are consumed worldwide as mutton, hogget, and lamb, kept as wool and milk producers, and used extensively in scientific research. The popular stereotype is that sheep are docile, passive, unintelligent, and timid, but a review of the research on their behavior, affect, cognition, and personality reveals that they are complex, individualistic, and social. (Abstract)

Earth Life > Sentience > Evolution Language

Brown, Steven. A Joint Prosodic Origin of Language and Music. Frontiers in Psychology. October 30, 2017. A McMaster University, Canada psychologist and director of the NeuroArts Lab advances the view that creaturely and primate communications have a common gestural musilanguage origin. Akin to Ma, Weiyi, et al herein, this initial phase evolved into dual, complementary rhythmic and linguistic modes, broadly conceived. So once more every instance natural and social phenomena can be seen to take on dual connective flow and discrete detail archetypes. See Brown’s publication list on the NeuroArts site for other articles such as The Narration/Coordination Model (2019).

Vocal theories of the origin of language rarely make a case for the precursor functions that underlay the evolution of speech. The vocal expression of emotion is unquestionably the best candidate for such a precursor, although most evolutionary models of both language and speech ignore emotion and prosody altogether. I present here a model for a joint prosodic precursor of language and music in which ritualized group-level vocalizations served as the ancestral state. This precursor combined not only affective and intonational aspects of prosody, but also holistic and combinatorial mechanisms of phrase generation. From this common stage, there was a bifurcation to form language and music as separate, though homologous, specializations. (Abstract)

Earth Life > Sentience > Evolution Language

Hoeschele, Marisa. Preface to the Special Section on Animal Music Perception. Comparative Cognition and Behavior. Volume 12, 2017. As scientific, psychological and linguistic studies find that all kinds of creatures, aided by online videos from corvids to elephants, indeed have an ear for and dance to musical rhythms, a field of study has formed around it, search Honing. Some papers are Relation Chord Perception by Pigeons, Consonance Processing by Nonhuman Animals, and Animal Pitch Perception. In regard, these findings of music appreciation across the evolutionary spectrum, along with communicative skills.

Earth Life > Sentience > Evolution Language

Honing, Henkjan, ed. The Origins of Musicality. Cambridge: MIT Press, 2018. The University of Amsterdam linguist edits a follow up volume to a Philosophical Transactions of the Royal Society B issue (Vol.370/Iss.1664, 2015) on realizations that a wide array of creatures indeed possess a deep propensity for all manner of rhythmic harmonies. Some chapters are Neural Overlap in Processing Music and Speech, Structure Building in Music, Language, and Animal Song, and Searching for the Origins of Musicality across Species.

Earth Life > Sentience > Evolution Language

Honing, Henkjan, et al. Without It No Music: Cognition, Biology and Evolution of Musicality. Philosophical Transactions of the Royal Society B. Vol.370/Iss.1664, 2015. HH, University of Amsterdam, Carel ten Cate, Leiden University, Isabelle Peretz, Montreal University, and Sandra Trehub, University of Toronto introduce an issue to broadly consider innate animal sensitivities to beat, pitch, and rhythm. The project is said to be inspired by YouTube videos of birds dancing to rock tunes, which revealed unexpected eabilities. Some entries are Four Principles of Bio-Musicality by Tecumseh Fitch, a guiding scholar for the endeavor, Evolutionary Roots of Creativity, Principles of Structure Building in Music Language and Animal Song, Finding the Beat across Humans and Non-human Primates, and Cross-cultural Perspectives on Music and Musicality. Follow-up editions are a 2018 volume The Origins of Musicality edited by H. Honing, reviewed herein, and Honing’s own The Evolving Animal Orchestra: In Search of What Makes Us Musical (MIT Press, 2018).

Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. What biological and cognitive mechanisms are then essential for perceiving, appreciating and making music? We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait. (Abstract excerpt)

Earth Life > Sentience > Evolution Language

Ma, Weiyi, et al. Spontaneous Emergence of Language-like and Music-like Vocalizations from an Artificial Protolanguage. Semiotica. Online April, 2019. Behavioral linguists WM, University of Arkansas, Anna Fiveash, University of Lyon, France, and William Forde Thompson, Macquarie University, Sydney experimentally show how cognitive streams innately tend to divide into dual language-like and prosodic musical modes. By a different approach and measure, once again neural nature seems to ever seek these distinctive, reciprocal script and/or score phases, which altogether compose life’s dramatic dance.

How did human vocalizations come to acquire meaning in the evolution of our species? Charles Darwin proposed that language and music originated from a common emotional signal system based on the imitation and modification of sounds in nature. This protolanguage is thought to have diverged into two separate systems, with speech prioritizing referential functionality and music prioritizing emotional functionality. However, there has never been an attempt to empirically evaluate the hypothesis that a single communication system can split into two functionally distinct systems that are characterized by music- and language like properties. Here, we demonstrate that when referential and emotional functions are introduced into an artificial communication system, that system will diverge into vocalization forms with speech- and music-like properties, respectively. (Abstract)

Earth Life > Sentience > Evolution Language

Massip-Bonet, Angels, et al, eds. Complexity Applications in Language and Communication Sciences. International: Springer,, 2019. Systems linguists A M-B and Albert Bastardas-Boada, University of Barcelona, and Gemma Bel-Enguix, National Autonomous University of Mexico (search each) gather diverse essays about how to perceive human conversant and literary discourse as a complex adaptive, self-organizing network similar to everywhere else. Their Introduction reviews this scientific and conceptual advance through the 2010s as it grows in breath and veracity. Again we may note that by turns, an inherent textual quality across natural and social realms becomes evident. Sample chapters could be The Paradigm of Complexity in Sociology, How and Why to Model the Complexity of Thought Systems, and Amazing Grace: An Analysis of Barack Obama’s Raciolinguistic Performances.

This book offers insights on the study of natural language as a complex adaptive system. It discusses a new way to tackle the problem of language modeling, and provides clues on how the close relation between natural language and some biological structures can be very fruitful for science. The book examines the theoretical framework and then applies its main principles to various areas of linguistics. It discusses applications in language contact, language change, diachronic linguistics, and the potential enhancement of classical approaches to historical linguistics by means of new methodologies used in physics, biology, and agent systems theory. It shows how studying language evolution and change using computational simulations enables to integrate social structures in the evolution of language, and how this can give rise to a new way to approach sociolinguistics.

In their Science as a Social Self-organizing Extended Cognitive System chapter, Robert Hristovsky, Natalia Balagué and Pablo Vázquez develop the idea that sciences are social self-organizing adaptive cognitive systems. They explain the rise of unifying themata in science overcoming the fragmentation of scientific language and illustrate the diversification and unification of scientific language with examples of different disciplines such as cosmology, chemistry, psychology and physics, among others. (8)

Earth Life > Sentience > Evolution Language

Searcy, William. Animal Communication, Cognition, and the Evolution of Language. Animal Behavior. Online April, 2019. An editorial introduction to a special issue with this title. As scientific realizations form that all manner of creatures from primates and birds onto invertebrate insects. See for example Evolutionary Roads to Syntax (Klaus Zuberbuhler), Rules, Rhythm and Grouping: Pattern Perception by Birds, Communication in Social Insects, and Syntactic Rules in Avian Vocal Sequences and the Evolution of Compositionality (Suzuki herein).

Earth Life > Sentience > Evolution Language

Suzuki, Toshitaka, et al. Syntactic Rules in Avian Vocal Sequences as a Window into the Evolution of Compositionality. Animal Behavior. Online April, 2019. In a special issue on Cognition and Language, University of Tokyo, Zurich, and Uppsala neurolinguists consider how birds achieve meaningful content and communication from their rhythmic twitters. An overall message might be that life’s long evolutionary development has altogether been trying to compose itself unto our late sapience expression and hopefully, if we can come to our individual and collective senses, reprise and recognition.

Understanding the origins and evolution of language remains a deep challenge, because its complexity and expressive power are unparalleled in the animal world. One of the key features of language is that the meaning of an expression is determined both by the meanings of its constituent parts and the syntactic rules used to combine them; known as the principle of compositionality. Although compositionality has been considered unique to language, recent field studies suggest that compositionality may have also evolved in vocal combinations in nonhuman animals. Here, we discuss how compositionality can be explored in animal communication systems and review recent evidence that birds use an ordering
rule to generate compositional expressions composed of meaningful calls. (Abstract)

Earth Life > Genetic Info

Trieu, Tuan, et al. Hierarchical Reconstruction of High-Resolution 3D Models of Large Chromosomes. Nature Scientific Reports. 9/4971, 2019. University of Missouri bioinformatic scientists Tuan Trieu (Vietman), Oluwatosin Oluwadare (Nigeria), and Jianlin Cheng (China) come together in mid America where they are developing better ways to visualize whole genome structures, as the paper illustrates. An improved image quality is achieved by a novel algorithm which can fully reveal these complex nucleotide packages

Earth Life > Genetic Info > DNA word

Bolshoy, Alexander, et al. Genome Clustering: From Linguistic Models to Classification of Genetic Texts. Berlin: Springer, 2010. Israeli geneticists contribute to growing indications of a pervasive code system by which engender phrases such as DNA texts and DNA linguistics, along with implications that our language corpus is then in some ways genomic in nature.

Earth Life > Genetic Info > DNA word

Faltynek, Dan, et al. Bases are not Letters: On the Analogy between the Genetic Code and Natural Language by Sequence Analysis. Biosemiotics. Online April, 2019. Palacky University, Olomouc, Czech Republic system scholars DF, Vladimir Matlach, and Ludmila Lackova (search) continue their project to parse an endemic, natural affinity between the prime informative occasions of biochemical nucleotide genomes and human linguistic complexities.

The article deals with the notion of the genetic code and its metaphorical understanding as a “language”. In the traditional view of the language metaphor of the genetic code, combinations of nucleotides are signs of amino acids. Similarly, words combined from letters (speech sounds) represent certain meanings. The language metaphor of the genetic code assumes that the nucleotides stay in the analogy to letters, triples to words and genes to sentences. We propose an application of mathematical linguistic methods on the notion of the genetic code. We provide quantitative analysis (n-gram structure, Zipf’s law) of mRNA strings and natural language texts, along with a representative analysis of DNA, RNA and proteins. Our analysis of mRNA confirms an assumption that the design of the genetic code cannot analogize DNA bases and letters. The notion of the letter is much more appropriate if analogized with triplets or amino acids (Abstract excerpt)

Earth Life > Integral Persons > Somatic

Bartsch, Ronny, et al. Network Physiology: How Organ Systems Dynamically Interact. PLoS One. November 10, 2015. RB, Bar-Ilan University, Kang Liu and Plamen Ivanov, Boston University, and Amir Bashan, Harvard Medical School scope out initial realizations that along with everything else, our bodily well-being, or lack thereof is wholly graced by and dependent on active webwork geometries. Their relative robustness or breakdown can then be a good measure of health or sickness (similar models are being applied to neural and behavioral states). See Network Medicine in the Age of Biomedical Big Data by Abjijeet Soanwane, (search) et al at arXiv:1903.05449 for an example of its actual utility.

We study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. (Abstract excerpt)

Earth Life > Integral Persons > Somatic

Soanwane, Abjijeet, et al. Network Medicine in the Age of Biomedical Big Data. arXiv:1903.05449. Brigham and Women’s Hospital, Boston systems physicians provide a good example of a novel holistic, systemic approach which takes in not only parts and a whole but internal, vital interconnections as a major factor for diagnosis and treatment

Earth Life > Integral Persons > Complementary Brain

Grossberg, Stephen. A Half Century of Progress Towards a Unified Neural Theory of Mind and Brain. Kozma, Robert, et al, eds. Artificial Intelligence in the Age of Neural Networks and Brain Computing. Cambridge, MA: Academic Press, 2018. The veteran Boston University neuroscientist and original theorist of this whole BI and AI revolution reviews his 50 year project (search) to theoretically and conceptually explain how our bilaterally complex brains proceed to envision, quantify, consider, think, learn, and effectively act in dynamic social and natural environments. The invited chapter is fully available on the author’s publication page. See herein his major paper Towards Solving the Hard Problem of Consciousness a year earlier in Neural Networks (87/38, 2017), along with Iain McGilchrist 2019. We include 3 quotes to convey its essence and message.

This article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. This project advanced in stages by way of revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. (Abstract excerpt)

Complementary Computing clarifies why there are multiple parallel processing streams in the brai to resolve computational uncertainties that cannot be overcome by just one processing stream or stage. Complementary Computing describes how the brain is organized into complementary parallel processing streams whose interactions generate biologically intelligent behaviors. A single cortical processing stream can individually compute some properties well, but cannot, by itself, process other computationally complementary properties. Pairs of complementary cortical processing streams interact to generate emergent properties that overcome their deficiencies to compute complete information with which to represent or control some faculty of intelligent behavior. (35)

The WHAT and WHERE cortical streams are complementary: The category learning, attention, recognition, and prediction circuits of the ventral, or What, cortical processing stream for perception and cognition are computationally complementary to those of the dorsal, or Where and How, cortical processing steam for spatial representation and action. One reason for this What - Where complementarity is that the What stream learns object recognition categories that are substantially invariant under changes in an object's view, size, and position. These invariant object categories enable our brains to recognize valued objects. They cannot, however, locate and act upon a desired object in space. Cortical Where stream spatial and motor representations can locate objects and trigger actions towards them, but cannot recognize them. By interacting together, the What and Where streams can recognize valued objects and direct appropriate goal-oriented actions towards them. (36-37)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next