(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape

E. Systems Cosmology: Fractal SpaceTimeMatter

Laskin, Nick. Fractals and Quantum Mechanics. Chaos. 10/4, 2000. A novel hypothesis of a “fractional quantum physics” as an indication of its fundamentally discrete, self-similar character.

Liang, L., et al. Self-Similarities and Power-laws in the Time-resolved Spectra of GRB 190114C, 130427A, 160509A, and 160625B. arXiv:1910.12615. In an entry to appear in Astronomy & Astrophysics, five scientists at the International Center for Relativistic Astrophysics Network, Pescara, Italy report upon the title Gamma Ray Burst (GRB) phenomena as it exemplifies a natural fractal display.

Conclusion: The most far reaching discovery of self-similarities and power-laws are extensively confirmed, thanks also to the conclusions presented in the companion papers, which leads to the existence of a discrete quantized repetitive polarized emission on a timescale as short as 10−14s. These results open new paths in the discovery of fundamental physical laws.

Lima, J. A. S. and R. E. de Souza. Power-law Stellar Distributions. Physica A. 350/303, 2005. Another example of how and where nonlinear self-similarities are being found on interstellar scales.

Liu, Qin. Towards a Fractal Approach to Hadronization. Physica A. 338/1-2, 2004. One more example of the intensifying global discovery of a self-similar universality from quanta to humankind.

Financial markets and those at the subnuclear level of matter are very much the same. (42)

Maeder, Andre. Evolution of the Early Universe in the Scale Invariant Theory. arXiv:1902.10115. The Geneva Observatory astronomer (search) expands his collegial quantification of a universally repetitious self-similarity onto the whole evolutionary cosmos. See also The Growth of the Density Fluctuations in the Scale-Invariant Vacuum Theory by AM and Vesselin Gueorguiev at 1811.03495.

Analytical solutions are obtained for the early cosmological phases in the scale invariant models with curvature k=0. The physical properties in the radiative era are derived from conservation laws and compared to those of current standard models. The critical runs of the temperature and of the expansion rate of the scale invariant models with low densities, are quite similar at the time of nucleosynthesis to those of standard models, leading to the same freezing number ratio of neutrons to protons. These results are consistent with the fact that the scale invariant models appear to not require the presence of dark matter. (Abstract)

Maeder, Andre. The Acceleration Relation in Galaxies and Scale Invariant Dynamics. arXiv:1804.04484. We cite this work by a Geneva Observatory astronomer records in 2018 how a broad and deep cosmic self-similarity, only spurious two decades ago, has now become commonly accepted, Here a collaborative technical presentation explains in extensive detail. See also Self-Similar Behavior in Galaxy Dynamics and Distributions of Dark Matter at 1804.06212.

We show that the scale invariant theory, with the assumption of the scale invariance of the empty space, correctly predicts the observed deviations in the acceleration relation. The large deviations and the flattening of the acceleration relation observed for the dwarf spheroidal galaxies are also well described. The presence of dark matter is no longer necessary in the scale invariant context, which also accounts why dark matter usually appears to dominate in galactic regions with low baryonic gravities. (Abstract excerpt)

Maeder, Andre and Vesselio Gueorguiev. Scale-Invariant Dynamics of Galaxies, MOND, Dark Matter and Dwarf Spheriodals. arXiv:2001.04978. Geneva Observatory and Institute for Advanced Physical Studies, Sofia astrophysicists report further evidence for nature’s pervasive celestial self-similarity. In regard, when we first posted this section in the early 2000s, a detection of any fractal forms in space was spurious and patchy. At this new 2020 decade dawns, their presence in every feature across the spatial raiment and its temporal course are now well proven. By a natural philoSophia, might we contemplate where do these ordained, non-random mathematical regularities come from. Might we wonder and as whatever reality put them there in the first place.

The Scale-Invariant Vacuum (SIV) theory is based on (Herman) Weyl's Integrable Geometry, endowed with a gauge scalar field. The main difference between MOND (Modified Newtonian Dynamics) and the SIV theory is that the first considers a global invariance of space and time, where the scale factor λ is constant, while the second considers λ as a function of time. The SIV theory shows an excellent agreement with observations and with MOND for baryonic gravities. These results support the view that there is no need for dark matter and that the RAR (Radial Acceleration Relation) and dynamical galaxies can be interpreted by a modification of gravitation. (Abstract excerpt)

A Dwarf Spheroidal Galaxy is a term in astronomy applied to small, low-luminosity galaxies with very little dust and an older stellar population. They are found in the Local Group as companions to the Milky Way and to the Andromeda Galaxy. (Wikipedia)

Marcolli, Matilde and Nicolas Tedeschi. Multifractals, Mumford Curves and Eternal Inflation. P-Adic Numbers, Ultrametric Analysis, and Applications. 6/2, 2014. We select this certain paper as an example of the infinite brilliance of an ordained human ability to quantify and comprehend any breadth and depth of natural phenomena. In this new journal described below, Caltech mathematicians contribute to our project as the universe’s way of consciously perceiving how thee and we came into being and becoming. Search Karthnik Siva for more of the lead author’s contributions.

We relate the Eternal Symmetree model of Harlow, Shenker, Stanford, and Susskind to constructions of stochastic processes related to quantum statistical mechanical systems on Cuntz-Krieger algebras. We extend the eternal inflation model from the Bruhat-Tits tree to quotients by p-adic Schottky groups, again using quantum statistical mechanics on graph algebras. (Abstract)

This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.

McAteer, James. Frozen-in Fractals All Around: Inferring the Large Scale Effects of Small-Scale Magnetic Structure. arXiv:1506.07914. A New Mexico State University, Solar Physics and Space Weather Group astronomer surveys the latest findings of a pervasive, inherently self-similar topology of the celestial raiment. See also 25 Years of Self-Organized Criticality: Numerical Detection Methods at arXiv:1506.08142 with McAteer as the lead author.

The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with large current densities at large size scale will be the source of energy storage for solar eruptive events. (Abstract)

McCullagh, Nuala, et al. Toward Accurate Modeling of the Nonlinear Matter Bispectrum. arXiv:1507.07824. As the Abstract explains, McCullagh, Institute of Computational Cosmology, Durham University, UK, Donghui Jeong, Institute for Gravitation and the Cosmos, Penn State University, and Alexander Szalay, Johns Hopkins University cite one more approach that reveals a self-similar, infinitely iterative ecosmos.

Accurate modeling of nonlinearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modeling the nonlinear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We then compare various analytical formulas and empirical fitting functions for modeling the nonlinear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for z≥1. (Abstract excerpts)

Miniati, Francesco and Andrey Beresnyak. Self-Similarity of Dynamo Action in the Largest Cosmic Structures. Nature. 523/59, 2015. Amongst a current rush of reports which confirm this ubiquitous topology, ETH Zurich and Royal Institute of Technology, Stockholm, physicists find galactic clusters, which are turbulent, magnetized media formed by gravitational instabilities, to exhibit a fractal topology. The permanent character of this hierarchy reflects yet another type of self-similarity in cosmology, while its structure, consistent with current data, encodes information about the efficiency of turbulent heating and dynamo action. The paper is also posted at arXiv:1507.01940.

Miniati, Francesco and Andrey Brersnyak. Self-Similar Energetics in Large Clusters of Galaxies. Nature. 523/59, 2016. ETH Zurich and Stockholm University astrophysicists continue to quantify how dynamic celestial phenomena exhibit invariant processes and topologies.

Massive galaxy clusters are filled with a hot, turbulent and magnetized intra-cluster medium. Still forming under the action of gravitational instability, they grow in mass by accretion of supersonic flows. These flows partially dissipate into heat through a complex network of large-scale shocks, while residual transonic (near-sonic) flows create giant turbulent eddies and cascades. Here we report that the energy components of the intra-cluster medium are ordered according to a permanent hierarchy, in which the ratio of thermal to turbulent to magnetic energy densities remains virtually unaltered throughout the cluster’s history, despite evolution of each individual component and the drive towards equipartition of the turbulent dynamo. The permanent character of this hierarchy reflects yet another type of self-similarity in cosmology, while its structure, consistent with current data, encodes information about the efficiency of turbulent heating and dynamo action. (Abstract excerpts)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]