(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

V. Life's Corporeal Evolution Develops, Encodes and Organizes Itself: An Earthtwinian Genesis Synthesis

A. A Major Emergent Evolutionary Transitions Scale

   

Stage Process Carrier
Atomic chemical compounds amino acids
Molecular genomic system deoxyribonucleotides
Symbiotic intercellular communication eukaryotic cells
Organism epigenetic dynamics mammals
Neuronal neural networks CNS and brains
Primate signal based protolanguage chimpanzees
Humankind language and knowledge people
Earthkinder genesis code discovery sapiensphere



 
     

We chose the cover of this 1995 book by John Maynard Smith and Eors Szmathary which introduced their conceptual notice of a nested, developmental sequence because it depicts life’s creaturely evolution as proceeding to our human phase. The image has been criticized as an olden “great scale of nature” since currently a teleological goal denied, nor is it permitted. But if newly due to a worldwise sapienence coming to her/his (Charlotte and Charles EarthWin) own knowledge, an oriented, central course may indeed be quantified and set in place.

As this site tracks the broad field of evolutionary biology, into the 2010s this model has gained acceptance because it well defines life’s episodic emergence from replicative biomolecules to human linguistic societies. This section offers a diverse array of studies, tweaks, adjustments both at specific levels and for the whole procession. A notable aspect is that each phase is seen to possess a novel genetic-like code version. Here is an example where a prior neoDarwinian aimless, contingent, selection scheme exists side by side with a genesis synthesis which has not yet been fully articulated.

Our main website premise, which a new 2021 introduction reiterates, is the occurrence of a further consummate, spherical stage. So the section will also gather entries that glimpse a continuance of this pattern and process onto a nascent Earthkinder. But it is important to enter a caveat and distinction. While this planetary occasion is especially manifest via its cerebral, informative sapiensphere, and sometimes alluded to as a super-organic phase, we do not here imply an homogeneous globalization. Rather as described in Sustainable Ecovillages in chapter VIII, a next evident stage actually seems to be social protocells, in a way akin to viable protocells at life’s origin.

2020: A major revision since 1995 is a theoretical view that life’s developmental evolution can be characterized by a nested, episodic, recurrent, directional sequence of being and becoming. Although life’s course through myriad forms and stages does meander with many extinctions, a regnant, scalar procession from gene replicators all the way to talkative peoples is now widely applied. As such it provides skeletal orientation for a genesis synthesis.

2023: Since its introduction in 1995 (Maynard Smith, Szathmary) this model perception has become well applied, but rarely extended to its human phase. Into the 2020s this has changed with two dedicated journal issues: Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations by Robin, Amanda Robin, et al in Frontiers in Ecology and Evolution (December 2021) and Human Socio-Cultural Evolution in Light of Evolutionary Transitions by Yohay Carmel, et al in Royal Society Philosophical Transactions B. (February 2023). However the scale has not yet come to public notice where it could provide a vital planatural philosophy.

Andersson, Claes and Petter Tornberg. Toward a Macroevolutionary Theory of Human Evolution: The Social Protocell. Biological Theory. 14/2, 2019.
Bourrat, Pierrick. Transitions in Evolution: A Formal Analysis. Synthese. 198/3699, 2021.
Carmel, Yohay and Ayelet Shavit. Operationalizing Evolutionary Transitions in Individuality. Proceedings of the Royal Society B February, 2020.
Davison, Dinah, et al.. Did Human Culture Emerge in a Cultural Evolutionary Transition in Individuality? Biological Theory. July, 2021.
Furukawa, Hikaru and Sara Imari Walker. Major Transitions in Planetary Evolution. Ikegami, Takashi, et al, eds. ALIFE 2018 Conference Proceedings. Cambridge: MIT Press, 2018.
Hanschen, Erik, et al. Individuality and the Major Evolutionary Transitions. Gissis, Snait, et al, eds. Landscapes of Collectivity in the Life Sciences. Cambridge: MIT Press, 2018.

Keenan, Jack and Daniel McShea. Synergies Among Behaviors Drive the Discovery of Productive Interactions. Biological Theory. December 2022.
Nonacs, Peter, et al. Social Evolution and the Major Evolutionary Transition in the History of Life. Frontiers in Ecology and Evolution. December, 2021.
Robin, Amanda, et al. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Frontiers in Ecology and Evolution. December, 2021.
Watson, Richard, et al. Design for an Individual: Connectionist Approaches to the Evolutionary Transitions in Individuality. Frontiers in Ecology and Evolution. March 2022.
Waring, Timothy and Zachary Wood. Long-term Gene-culture Coevolution and the Human Evolutionary Transition. Proceedings of the Royal Society B. May, 2021.

2023: In February already, we make major note of Human Socio-Cultural Evolution in Light of Evolutionary Transitions: Introduction to the Theme Issue. by Yohay Carmel, et al, see whole review herein.

Major Transitions in Evolution. www.thegreatcourses.com/courses/major-transitions-in-evolution. A 24 part presentation of this 21st century model of life’s nested, scalar emergence from replicative biochemicals to human culture. Conceived by John Maynard Smith and Eors Szathmary in the 1990s (search each), as evinced by a Great Course edition, it is now a widely accepted and availed replacement for gradual, Darwinian drift. But, we note, the old aimless version remains in textbooks, which still denies any direction or human phase. See Szathmary’s 2015 update Toward Major Evolutionary Transitions Theory 2.0 in PNAS (112/10104).

How and when did life on Earth get to be the way it is today? Imagine a world without bees, butterflies, and flowering plants. That was Earth 125 million years ago. Turn back the clock 400 million years, and there were no trees. At 450 million years in the past, even the earliest insects had not yet developed. And looking back 500 million years-a half-billion years before the present-the land was devoid of life, which at that time flourished in a profusion of strange forms in the oceans. These and other major turning points are the amazing story of evolution, the most remarkable force in the history of Earth, the organizing principle throughout the biological sciences, and the most important mechanism scientists use to understand the varieties of life on our planet.
Major Transitions in Evolution tells this science-detective story in 24 lavishly illustrated lectures that focus on the giant leaps that gave rise to nature's boundless diversity. You study the conditions that led to the first complex cells, flying insects, flowering plants, mammals, modern humans, and many other breakthroughs. And in the process of studying the past, you gain a powerful understanding of the present world. This course is taught by two professors: Anthony Martin, a paleontologist and geologist at Emory University, and John Hawks, a paleoanthropologist at the University of Wisconsin-Madison. You also explore many other transitions that occurred between these milestones, and you take an intriguing look ahead to speculate about the future direction of evolution. From the deep past until today, evolution has been a story with countless subplots, false leads, and reversals of fortune. But it has had one overarching theme-that life is wondrous, resilient, and endlessly surprising.

Andersson, Claes and Petter Tornberg. Toward a Macroevolutionary Theory of Human Evolution: The Social Protocell. Biological Theory. 14/2, 2019. Within a context of the major transitions in individuality scale, Chalmers University of Technology, Sweden systems scholars achieve an overdue perception whereof societal groupings can take on a guise akin to life’s original protocells. As early hominins form symbiotic bands, they achieve adaptive internal reciprocities as cellular wholes within Wholes. A tacit principle is an emergent recurrence of the same pattern and process. In each case, a bounded unit leads which then fosters cooperation, knowledge gain and selfhood in community. By way of this nested procession, life’s rise accrues “new channels of inheritance” and an oriented direction. In regard, this website has been citing a “social protocell” for some time, especially in Ecovillages. See also Group-Level Social Knowledge by Elizabeth Hobson, et al at arXiv:1810.07215 and The Cultural Brain Hypothesis by Michael Muthukrishna et al in PLoS Computational Biology (Nov. 2018) for other takes.

Despite remarkable empirical and methodological advances, our theoretical understanding of the evolutionary processes that made us human remains fragmented and contentious. Here, we make the radical proposition that the cultural communities within which Homo emerged may be understood as a novel exotic form of organism. The argument begins from a deep congruence between robust features of Pan community life cycles and protocell models of the origins of life. We argue that if a cultural tradition, meeting certain requirements, arises in the context of such a “social protocell,” the outcome will be an evolutionary transition in individuality. By so doing, traditions and hominins coalesce into a macroscopic bio-socio-technical system, with an organismal organization that is culturally inherited. We refer to this hypothetical evolutionary individual as a “sociont.” We go on to hypothesize that the fate of the hominin would be mutualistic coadaptation into a part-whole relation with the sociont. (Abstract excerpt)

We also thereby move in the direction of unifying human evolution with the larger issue of major evolutionary transitions in natural history (MET). The dramatic evolutionary, ecological and environmental impact of the advent of Home sapiens hereby falls more squarely into the larger natural historical pattern of evolutionary disruptions resulting from bouts of innovation on this fundamental level. (2)

Andersson, Claes and Tamas Czaran. The Transition from Animal to Human Culture Culture – Simulating the Social Protocell Hypothesis. Royal Society Philosophical Transactions B. February, 2023. In this special issue, a Chalmers University of Technology, Sweden and an ELKH Centre for Ecological Research, Budapest system anthropologists continue to articulate this vital perception (search CA) of life’s latest cellular occasion, after compartmental origins, as the formation of nominal 100 strong, diverse communities as a ubuntu-like me member and We group creative union coherence.

The origin of human cumulative culture is ofter seen as the appearance, some 2.0–2.5 my ago, of a capacity to copy the know-how about socially learned traditions. While plausible, this story faces a ‘startup problem.’ In contrast, the social protocell hypothesis explains that relative lore may have originated earlier as non-cumulative traditions via an emergent group-level channel of cultural inheritance. Hominin cultural lifestyles would have gained in complexity and sophistication as they become units of selection (socionts) via an evolutionary transition in individuality, similar to the origin of early cells. (Excerpt)

A. Institutions and cultural lifestyles can come to undergo cumulative evolution even if their socially learned components do not. The reason is that inheritance of institutional know-how, via the social protocell dynamics, can be faithful even if know-how is not inherited in the first place via social learning. B. Institutions that improve and expand the set of coincidental ‘meta-evolutionary’ functions (heredity) that the social protocell provides may also themselves evolve in this way. This paves the way for a cultural ETI where an incipient group-level unit of selection gains more and more evolutionary individuality the more evolutionary individuality it has gained. (9)

Barron, Andrew, et al. Transitions in Cognitive Evolution. Proceedings of the Royal Society B.. June, 2023. Macquarie University, Cambridge University and Australian National University biophilosophers continue within this working model to finesse life’s developmental, quickening course by way of a stratified advance of cerebral faculties and abilities.

The evolutionary history of animal cognition appears to involve major transitional changes that opened up new phylogenetic possibilities for cognition. In regard, we discuss how an important feature of an evolutionary transition should alter what is evolvable so that new phenotypic spaces become possible. We focus on how selection might act on the computational architecture of nervous systems by way of five animal sequences. Transitional accounts allow a big-picture perspective of macroevolution by focusing on changes that have had major consequences. (Excerpt)

Bourke, Andrew F. G. Principles of Social Evolution. Oxford: Oxford University Press, 2011. A University of East Anglia behavioral zoologist integrates the study of animal assemblies across many phyla into the major evolutionary transitions scale to gain a vital perspective. Life’s evident, sequential propensity to form cooperative groupings is then braced by factoring in inclusive fitness, (kin selection) theory. An expanded sense of recurrent communities from prokaryote microbes to homo sapiens can then be described. Bourke goes on to affirm the earlier work of Leo Buss (1987) who perceives a consistent “evolution of individuality” at each stage. With Brett Calcott (2011), Selin Kesebir (2012) and others, another confirmation of this major episodic model is stated, a latter, temporal “scala naturae.”

Bourrat, Pierrick. Evolutionary Transitions in Heritability and Individuality. Theory in Biosciences. Online May, 2019. A Macquarie University, Sydney philosopher of biology (search) continues to finesse and advance understandings of this nested, episodic, accepted model of life’s regnant reciprocity of persons in communities. See also Trait Heritability in Major Transitions by Matthew Herron, et al in BMC Biology (16/145, 2018). For later work by PB see Transitions in Evolution in Synthese at 198/3699, 2021, and Evolutionary Transitions in Individuality in Theory and Method in Biosciences at tmbiosci.org (12/22).

The literature on evolutionary transitions in individuality (ETIs) has mostly focused on the relationships between lower-level (particle-level) and higher-level (collective-level) selection, leaving aside contrasts between particle-level and collective-level inheritance. To that effect, I present a model to study particle-level and collective-level heritability both when a collective-level trait is a linear function and when it is a non-linear function of a particle-level trait. The upshot is that population structure is a driver for ETIs. (Abstract excerpt)

Calcott, Brett and Kim Sterelny, ed. The Major Transitions in Evolution Revisited. Cambridge: MIT Press, 2011. The volume is a decadal update upon this major theoretical advance, now much accepted, which still struggles with a nested scale of being and becoming from microbe to man at odds with prior Darwinian tenets. Players such as Daniel McShea, Samir Okasha, Peter Godfrey-Smith, and others wonder about its greater or lesser significance – is it really there, are the levels equal, what if anything drives its form, how about an evolving informational cause for each stage, and so on. While the overall pattern seems to evince an inherent self-organization, only one chapter by University of Adelaide philosopher Pamela Lyon touches upon complex dynamical systems. A summary retrospective by Eors Szathmary and Chrisantha Fernando goes on to note how this multilevel model quite provides a working structure for life’s evolutionary emergence.

In 1995, John Maynard Smith and Eörs Szathmáry published their influential book The Major Transitions in Evolution. The "transitions" that Maynard Smith and Szathmáry chose to describe all constituted major changes in the kinds of organisms that existed but, most important, these events also transformed the evolutionary process itself. The evolution of new levels of biological organization, such as chromosomes, cells, multicelled organisms, and complex social groups radically changed the kinds of individuals natural selection could act upon. Many of these events also produced revolutionary changes in the process of inheritance, by expanding the range and fidelity of transmission, establishing new inheritance channels, and developing more open-ended sources of variation. The contributors discuss different frameworks for understanding macroevolution, prokaryote evolution (the study of which has been aided by developments in molecular biology), and the complex evolution of multicellularity. (Publisher)

Carmel, Yohay. Human Societal Development: Is It an Evolutionary Transition in Individuality? Royal Society Philosophical Transactions B. February, 2023. The Technion, Haifa environmentalist and co-conceiver of this novel collection discusses how a wide-range of prehistoric and anthropological examples can indeed be seen as part of life’s on-going homo sapient planetary phase, as it may just now collectively recognize itself. The four aspects noted below are regulation control, individual benefits, conflict resolve, and climate awareness. Another tacit theme is a reciprocity between members and groups.

An evolutionary transition in individuality (ETI) occurs when a previously independent organism becomes a lower level unit within a higher hierarchical level (cells in an organism, ants in a colony). Using archaeological accounts from the last 12 000 years, I propose that human society has increasingly functioned this way. I evaluate societal development with regard to size, unity and specialization complexity in biological systems in the light of ETIs. My conclusion is this: human society is undergoing an evolutionary transition in individuality, driven much by socio-cultural-technological processes. I propose four predictions derived from the hypothesis that may be used to test it.

Carmel, Yohay and Ayelet Shavit. Operationalizing Evolutionary Transitions in Individuality. Proceedings of the Royal Society B. February, 2020. Technion-Israel Institute of Technology scholars present a most comprehensive study to date of life’s ratcheted, sequential, scalar emergence of distinct “personal” organisms at each stage, which is now accepted as a valid structure. As the Abstract says, an interplay of diverse component entities as they join in bounded interactivity repeats in kind at each nested phase. With this consistency thoroughly described, Yohay Carmel notes that he is now at work on their further application as our homo sapiens transitions its global anthropic worldly consummation.

Evolutionary transitions in individuality (ETIs), such as the transition to multi-cellularity and to social colonies, have been at the centre of evolutionary research, but only few attempts were made to systematically operationalize this concept. Here we devise a set of four indicators intended to assess the change in complexity during ETIs: system size, inseparability, reproductive specialization and non-reproductive specialization. We then conduct a quantitative comparison across multiple taxa and their ETI. Our analysis reveals that inseparability has a crucial role in the process; it seems irreversible and may mark the point where group members become a new individual at a higher hierarchical level. Interestingly, we find that disparate groups demonstrate a similar pattern of progression along ETIs. (Abstract)

Carmel, Yohay, et al. Human Socio-Cultural Evolution in Light of Evolutionary Transitions: Introduction to the Theme Issue. Royal Society Philosophical Transactions B. February, 2023. YC and Ayelet Shavit, Technion, Haifa, Ehud Lamm, Tel Aviv University, and Eors Szathmary, Institute of Evolution, Budapest, a co-originator in 1995 with John Maynard Smith of the major evolutionary transitions model, have seen fit to request, gather and post a diverse array of some 15 entries, (most noted below) that can now attest to and well verify the actual occurrence of a further Earthuman sapient personsphere phase. Akin to the 2020s Teleology Turn section, it has lately become quite deeply evident that an emergent person-planet beingness has achieved vivifying, intelligent envelope.

Four main sections: Human Transition in Individuality in the Context of Evolutionary Transitions; Cultural Evolution; Historical and Pre-historical Perspectives on Human Evolutionary Transition; and Realizations of the Notion of a Human Transition in Individuality cover past convergences, present indications and future implications in quantified detail. Here is a partial list of papers with some reviews herein noted.

Griesemer, James and Ayelet Shavit. Scaffolding Indivbiduality: Coordination, Cooperation, Collaboration and Community.
Dor, Daniel. Communication for Collaborative Computation.
Denton, Kaleda, et al. Conditions that Favour Cumulative Cultural Evolution.
Bar-On, Katl Kish and Ehud Lamm. The Interplay of Social Identity and Morm Psychology in the Evolution of Human Groups.

Lamm, Ehud, et al. Human Major Transitions from the Perspective of Distributed Adaptations.(see review)
Szilagyi, Andras, et al. Evolutionary Ecology of Language Origins through Confrontational Scavenging.
Krall, Lisi. The Economic Superorganism in the Complexity of Evolution. Royal Society.
Rainey, Paul. Major Evolutionary Transitions in Individuality Between Humans and AI.

Davison, Dinah and Richard Michod. Steps to Individuality in Biology and Culture. (review)
Andersson, Claes and Tamas Czaran. The Transition from Animal to Human Culture Culture – Simulating the Social Protocell Hypothesis. (see review)
Townsend, Cathryn, et al. Human Cooperation and Evolutionary Transitions.
Carmel, Yohay. Human Societal Development: Is It an Evolutionary Transition in Individuality? (see review)

Modern human societies are intricately complex due to a division of labour, multiple hierarchies, communication networks, transport systems and everything else. Various scholars have proposed that a new spherical stage or phase which subsumes individuals may well be underway. Recent discussions of a global continuance of life’s nested, emergent scale evolutionary transition in individuality (ETI) involve many novel, relevant indications and features which are just indicating such an occasion. For the first time, this unique collection begins to consider and flesh out its beneficial reality. Four relevant aspects are engaged: (i) The general theory of ETIs. (ii) The unique aspects of cultural evolution. (iii) The evolutionary history and pre-history of humans. (iv) Specific routes of a possible human ETI. The 15 essays bring contributions from biology, anthropology, cultural evolution, systems theory, psychology, economy, linguistics and philosophy of science. (Abstract excerpt)

Chavalarias, David. From Inert Matter to the Global Society: Life as Multi-level Networks of Processes. Philosophical Transactions of the Royal Society B. February, 2020. This synoptic survey which alludes to a next planetary phase is reviewed more in Network Physics.

Clarke, Ellen. Origins of Evolutionary Transitions. Journal of Biosciences. 39.2, 2017. In this Individuals and Groups issue, the All Souls College, Oxford, UK philosopher of biology surveys the lineaments and identities that drive and distinguish ascendant grouping of earlier, simpler wholes into new, beneficial, organism-like forms.

An ‘evolutionary transition in individuality’ or ‘major transition’ is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can happen, especially how they can get started. (Abstract)

1 | 2 | 3 | 4 | 5 | 6  Next