
III. An Organic Habitable Zone UniVerse1. Quantum Thermodynamics
As I have noted on occasion, my 1960 degree is in engineering thermodynamics from Brooklyn Polytechnic Institute, now NYU Poly. Back then the field was mainly about the three laws for steam power plants. In 1987 I had lunch at a complexity conference with Ilya Prigogine, the 1970s Nobel founder of nonequilibrium thermodynamics. Since around 2010, aided by Internet worldwide collaborations, such studies of energy source, usage, dissipation, and entropies, widely conceived, began to merge with quantum mechanical physics by way of corresponding theoretical finesses. Into the late 2010s, these composite endeavors have spread and grown to an extent and depth that they merit their own subsection. International Workshop Open Quantum Dynamics and Thermodynamics. https://pcs.ibs.re.kr/PCS_Workshops/PCS_OpeQ. A meeting to be held at PCS IBS (Center for Theoretical Physics of Complex Systems, Institute for Basic Science) Daejeon, South Korea from March 30 to April 2, 2020. We cite as an0ther example of the “second quantum revolution” now well underway, as the summary notes. A recent paper from this group is Nonlinear Topological Photonics at arXiv:1912.01784. The field of open quantum systems is undergoing rapid development due to new devices based on quantum superposition and coherence. In this context, it is crucial to understand: (i) the thermodynamic behavior of small quantum systems, in particular when in contact with an environment; (ii) the related fluctuation relations that connect thermodynamic quantities such as work and free energy of the device; (iii) effects of intermediate and strong coupling to the environment; (iv) manybody effects and their persistence in the presence of dissipation. The aim of the workshop is to bring together leading researchers to present new results and appropriate methodologies to identify and solve the relevant problems of the field. (Summary) Alicki, Robert and Michal Horodecki. InformationThermodynamics Link Revisited. Journal of Physics A. 52/8, 2019. In a special Shannon’s Information Theory 70 Years On collection, University of Gdansk, Poland physicists (search) continue to finesse this intrinsic affinity between energies and communication. The socalled informationthermodynamics link created by a thought experiment of Szilard has become a modern orthodoxy in the field of quantum information and resources theory in quantum thermodynamics. We recall existing objections against standard interpretation of Szilard engine operation and illustrate them by two quantum models: a particle in a box with timedependent thin potential barrier and the spinboson model. The consequences of the emerging superselection rules for thermodynamics and foundations of quantum mechanics are discussed. (Abstract) Alicki, Robert and Ronnie Kosloff. Introduction to Quantum Thermodynamics: History and Prospects. arXiv:1801.08314. A University of Gdansk, Poland physicist and a Hebrew University of Jerusalem chemist provide a 45 page tutorial update to this expansive 21st century integral synthesis, advance and productive implementation of these two primary theories of an energetic natural creation. Quantum Thermodynamics is a continuous dialogue between two independent theories: Thermodynamics and Quantum Mechanics. Whenever the two theories addressed the same phenomena new insight has emerged. We follow the dialogue from equilibrium Quantum Thermodynamics and the notion of entropy and entropy inequalities which are the base of the IIlaw. Dynamical considerations lead to nonequilibrium thermodynamics of quantum Open Systems. The central part played by completely positive maps is discussed leading to the GoriniKossakowskiLindbladSudarshan GKLS equation. We address the connection to thermodynamics through the systembath weakcouplinglimit WCL leading to dynamical versions of the Ilaw. The dialogue has developed through the analysis of quantum engines and refrigerators. Reciprocating and continuous engines are discussed. The autonomous quantum absorption refrigerator is employed to illustrate the IIIlaw. (Abstract)
Anders, Janet and Massimiliano Esposito.
Focus on Quantum Thermodynamics.
New Journal of Physics.
19/010201,
2017.
University of Exeter and University of Luxembourg physicists introduce a special collection about this popular frontier field. Among the papers so far are Perspective on Quantum Thermodynamics and Limits to Catalysis in Quantum Thermodynamics. Thermodynamics has been highly successful, impacting strongly on the natural sciences and enabling the developments that have changed our lives. Until recently, it was applied to large systems described classical physics. However, with modern technologies miniaturizing down to the nanoscale and into the quantum regime, testing the applicability of thermodynamics in this new realm has become an exciting challenge. As a result the field of quantum thermodynamics has recently started to blossom, fuelled by new, highly controlled quantum experiments, powerful numerical methods, and novel theoretical tools, for instance in nonequilibrium thermodynamics and quantum information theory. Some goals of the field are (i) a better understanding of thermalization in quantum systems, (ii) the characterization of nonequilibrium fluctuations in the quantum regime, and (iii) the design and realization of new experiments using, for example, nuclear spins, cold atoms, trapped ions and optomechanic setups. (Intro edits) Faist, Philippe. Quantum Coarse Graining: An InformationTheoretic Approach to Thermodynamics. arXiv:1607.03104. A 300 page thesis for a Doctor of Sciences degree from ETH Zurich which we record in 2016 to evince that beyond fixations on the 19th century entropic second law, as popular writings do, articulations of thermodynamic theory continue in the present day. We investigate fundamental connections between thermodynamics and quantum information theory. First, we show that the operational framework of thermal operations is nonequivalent to the framework of Gibbspreserving maps, and we comment on this gap. We then introduce a fully informationtheoretic framework generalizing the above by making further abstraction of physical quantities such as energy. In the case of information processing on memory registers with a degenerate Hamiltonian, the answer is given by the maxentropy, a measure of information known from quantum information theory. In the general case, we obtain a new information measure, the "coherent relative entropy", which generalizes both the conditional entropy and the relative entropy. We then present how, from our framework, macroscopic thermodynamics emerges by typicality, after singling out an appropriate class of thermodynamic states possessing some suitable reversibility property. A natural thermodynamic potential emerges, dictating possible state transformations, and whose differential describes the physics of the system. Finally, noting that quantum states are relative to the observer, we see that the procedure above gives rise to a natural form of coarsegraining in quantum mechanics: Each observer can consistently apply the formalism of quantum information according to their own fundamental unit of information. (Abstract excerpts) Gemmer, Jochen, et al. Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Berlin: Springer, 2012. Physicists from Germany and England explore the latest theories as to how thermodynamic phenomena, both linear equilibrium and nonlinear far from equilibrium, could be seen to spring from, and be explained by, a spontaneous quantum phase source. This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium  with equilibrium characterized by maximum ignorance about the open system of interest  neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modestsized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially nonequilibrium phenomena and thermodynamic processes of the nanodomain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. Goold, John, et al. The Role of Quantum Information in Thermodynamics: A Topical Review. Journal of Physics A. 49/14, 2016. Five physicists with postings in Italy, Spain, Switzerland and the UK contribute forty pages to this whole scale revision of what constitutes nature’s deepest phase. It’s course spans from a rudimentary 20th century strangeness onto energetic and communicative features similar to every other universe stage and instance. See also Quantum and Information Thermodynamics by Philipp Strasberg, et al in Physical Review X (7/2, 2017). This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermocurious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world. (Abstract) Kosloff, Ronnie. Quantum Thermodynamics. arXiv:1305.2268. The Hebrew University senior chemist and leading theorist of this turn previews in 2013 how these vital propensities across all natural domains might come to be unified, as they must be. Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The link is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finitetimethermodynamics. The emergence of the 0law Ilaw IIlaw and IIIlaw of thermodynamics from quantum considerations is presented. The emphasis is on consistence between the two theories which address the same subject from different foundations. Kosloff, Ronnie. Quantum Thermodynamics. Entropy. August, 2015. We offer this quote from an introduction and invitation by the Hebrew University chemist and editor for a special issue on this novel integrations of fundamental theoretical realms. Twenty two papers are now included in the collection such as Nonequilibrium Thermodynamics and Steady State Density Matrix for Quantum Open Systems and Unified Quantum Model of Work Generation in Thermoelectric Generators, Solar and Fuel Cells. A call for papers for a Quantum Thermodynamics II edition has been posted by R. Kosloff in April 2018. Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. Both theories address the same physical phenomena of light and matter. In 1905, Einstein postulated that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized. Currently, quantum thermodynamics addresses the emergence of thermodynamic phenomena from quantum mechanics. In addition, to what extent do the paradigms of thermodynamics apply in the quantum domain, when quantum effects, such as quantum correlation, quantum fluctuation, coherences and entanglement, come into play. Emerging novel quantum technology motivates the quest for smaller devices. Such devices operating at the quantum level form the foundation for quantum information and quantum metrology. The field of quantum thermodynamics is going through rapid development with contributions from many fields of science physics, such as open quantum systems, quantum information, quantum optics, statistical physics, solid state, cold atoms, optomechanics and more. Kosloff, Ronnie. Quantum Thermodynamics II. Entropy. April, 2018. The Hebrew University theoretical of Jerusalem chemist announces a second edition of the 2015 collection that he commissioned for this online journal. Quantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. Both theories address the same physical phenomena of light and matter. Currently, quantum thermodynamics addresses the emergence of thermodynamic phenomena from quantum mechanics. To what extent do the paradigms of thermodynamics apply in the quantum domain, when quantum effects such as quantum correlation, quantum fluctuation, coherences, and entanglement come into play? This unification is going through rapid development, with contributions from many fields of physics, such as open quantum systems, quantum information, quantum optics, statistical physics, solidstate, cold atoms, optomechanics, and more. This interdisciplinary character leads to different viewpoints. (Proposal edits) Liu, Nana, et al. Quantum Thermodynamics for a Model of an Expanding Universe. arXiv:1409.5283. While equilibrium second law fixations continue to predict an entropic doom, as if a parallel reality physicists with postings in the UK, Italy, Singapore, Australia and Israel, including Vlatko Vedral, advance 21st century theories of a dynamically developing cosmos that, as if a second singularity, can produce its own selfquantification and cognizance. See also The Second Laws of Quantum Thermodynamics by Feranado Brandao, et al in PNAS (112/3275, 2015). We investigate the thermodynamical properties of quantum fields in curved spacetime. Our approach is to consider quantum fields in curved spacetime as a quantum system undergoing an outofequilibrium transformation. The nonequilibrium features are studied by using a formalism which has been developed to derive fluctuation relations and emergent irreversible features beyond the linear response regime. We apply these ideas to an expanding universe scenario, therefore avoiding assumptions on the relation between entropy and quantum matter. We provide a fluctuation theorem which allows us to understand particle production due to the expansion of the universe as an entropic increase. Our results pave the way towards a different understanding of the thermodynamics of relativistic and quantum systems in our universe. (Abstract) Mahler, Gunter. Quantum Thermodynamic Processes: Energy and Information Flow at the Nanoscale. Singapore: Pan Stanford, 2015. The emeritus University of Stuttgart physicist has been a premier theorist in this fundamental field. This work proceeds to survey the latest literature to present an update 2010s synthesis. As our website reports, these primary physical realms of the title keywords are under revision and integration into a dynamical cosmos which seems to be suffused by a manifest conveyance of relative descriptive content. Again, the participatory circuit of J. A. Wheeler provides a unique capsule via cognizant observers.


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 