(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape

1. Life's New Open Quantum Informatiive Resource Thermoversion

As I have noted on occasion, my 1960 degree is in engineering thermodynamics from Brooklyn Polytechnic Institute, now NYU Poly. Back then the field was mainly about the three laws for steam power plants. In 1987 I had lunch at a complexity conference with Ilya Prigogine, the 1970s Nobel founder of nonequilibrium thermodynamics. Since around 2010, aided by Internet worldwide collaborations, such studies of energy source, usage, dissipation, and entropies, widely conceived, began to merge with quantum mechanical physics by way of corresponding theoretical finesses. Into the late 2010s, these composite endeavors have spread and grown to an extent and depth that they merit their own subsection.

2020: This fledgling field is an intersect of thermodynamic theory, a work in conceptual progress, with quantum phenomena as it reconceives itself via complex dynamic systems, has led to a flurry of insightful syntheses.

Alicki, Robert and Ronnie Kosloff. Introduction to Quantum Thermodynamics: History and Prospects. arXiv:1801.08314.
Ball, Philip. Physicists Rewrite the Fundamental Law that Leads to Disorder. Quanta. May 26, 2022.
Binder, Felix, et al, eds. Thermodynamics in the Quantum Regime. International: Springer, 2021.
Bowick, Mark, et al. Symmetry, Thermodynamics and Topology in Active Matter. Physical Review X. February, 2022.
Dann, Roie and Ronnie Kosloff. Unification of the First Law of Quantum Thermodynamics. arXiv:2208.10561.
Manabendra, Nath, et al. Thermodynamics from Information. arXiv:1805.10282.
Rubino, Giulia, et al. Quantum Superposition of Thermodynamic Evolution with Opposing Time’s Arrow. Communications Physics. November 2022.
Shah, Ruhi and Jonathan Gorard. Quantum Cellular Automata, Black Hole Thermodynamics and the Laws of Quantum Complexity. Complex Systems. 28/4, 2019.
Wilson, Matt and Giulio, Chilibella. A Mathematical Framework for Transformations of Physical Processes. arXiv:2204.04319.
Wolchover, Natalie. The Quantum Thermodynamics Revolution. Quanta. May 2, 2017.

2023:

International Workshop Open Quantum Dynamics and Thermodynamics. https://pcs.ibs.re.kr/PCS_Workshops/PCS_OpeQ. A meeting to be held at PCS IBS (Center for Theoretical Physics of Complex Systems, Institute for Basic Science) Daejeon, South Korea from March 30 to April 2, 2020. We cite as an0ther example of the “second quantum revolution” now well underway, as the summary notes. A recent paper from this group is Nonlinear Topological Photonics at arXiv:1912.01784.

The field of open quantum systems is undergoing rapid development due to new devices based on quantum superposition and coherence. In this context, it is crucial to understand: (i) the thermodynamic behavior of small quantum systems, in particular when in contact with an environment; (ii) the related fluctuation relations that connect thermodynamic quantities such as work and free energy of the device; (iii) effects of intermediate and strong coupling to the environment; (iv) many-body effects and their persistence in the presence of dissipation. The aim of the workshop is to bring together leading researchers to present new results and appropriate methodologies to identify and solve the relevant problems of the field. (Summary)

Alicki, Robert and Michal Horodecki. Information-Thermodynamics Link Revisited. Journal of Physics A. 52/8, 2019. In a special Shannon’s Information Theory 70 Years On collection, University of Gdansk, Poland physicists (search) continue to finesse this intrinsic affinity between energies and communication.

The so-called information-thermodynamics link created by a thought experiment of Szilard has become a modern orthodoxy in the field of quantum information and resources theory in quantum thermodynamics. We recall existing objections against standard interpretation of Szilard engine operation and illustrate them by two quantum models: a particle in a box with time-dependent thin potential barrier and the spin-boson model. The consequences of the emerging superselection rules for thermodynamics and foundations of quantum mechanics are discussed. (Abstract)

Alicki, Robert and Ronnie Kosloff. Introduction to Quantum Thermodynamics: History and Prospects. arXiv:1801.08314. A University of Gdansk, Poland physicist and a Hebrew University of Jerusalem chemist provide a 45 page tutorial update to this expansive 21st century integral synthesis, advance and productive implementation of these two primary theories of an energetic natural creation.

Quantum Thermodynamics is a continuous dialogue between two independent theories: Thermodynamics and Quantum Mechanics. Whenever the two theories addressed the same phenomena new insight has emerged. We follow the dialogue from equilibrium Quantum Thermodynamics and the notion of entropy and entropy inequalities which are the base of the II-law. Dynamical considerations lead to non-equilibrium thermodynamics of quantum Open Systems. The central part played by completely positive maps is discussed leading to the Gorini-Kossakowski-Lindblad-Sudarshan GKLS equation. We address the connection to thermodynamics through the system-bath weak-coupling-limit WCL leading to dynamical versions of the I-law. The dialogue has developed through the analysis of quantum engines and refrigerators. Reciprocating and continuous engines are discussed. The autonomous quantum absorption refrigerator is employed to illustrate the III-law. (Abstract)

Anders, Janet and Massimiliano Esposito. Focus on Quantum Thermodynamics. New Journal of Physics. 19/010201, 2017. University of Exeter and University of Luxembourg physicists introduce a special collection about this popular frontier field. Among the papers so far are Perspective on Quantum Thermodynamics and Limits to Catalysis in Quantum Thermodynamics.

Thermodynamics has been highly successful, impacting strongly on the natural sciences and enabling the developments that have changed our lives. Until recently, it was applied to large systems described classical physics. However, with modern technologies miniaturizing down to the nanoscale and into the quantum regime, testing the applicability of thermodynamics in this new realm has become an exciting challenge. As a result the field of quantum thermodynamics has recently started to blossom, fuelled by new, highly controlled quantum experiments, powerful numerical methods, and novel theoretical tools, for instance in non-equilibrium thermodynamics and quantum information theory. Some goals of the field are (i) a better understanding of thermalization in quantum systems, (ii) the characterization of non-equilibrium fluctuations in the quantum regime, and (iii) the design and realization of new experiments using, for example, nuclear spins, cold atoms, trapped ions and optomechanic setups. (Intro edits)

Ball, Philip. Physicists Rewrite the Fundamental Law that Leads to Disorder. Quanta. May 26, 2022. In this significant article, the British polyscholar science writer surveys a rush of current advances which altogether well imply an historic revision of 19th century thermodynamic theories By a novel inclusion of quantum information qualities, the entropic demise implied by the second law from Ludwig Boltzmann (1877) can be set aside and moved beyond. This wide=ranging entry builds its case by enjoining the thought and writings of key contributors such as Chiara Marletto and David Deutsch (constructor theory), along with Vlatko Vedral, Gilad Gour, Markus Muller and others.

In addition quantum physicists such as Giulio Chiribella (search), Carlo Scandolo and Nicole Yunger Halpern provide insights based on relational aspects, resource computations, networks and more. Earlier work such as The Resource Theory of Informational Nonequilibrium in Thermodynamics by Gilad Gour, et al (1309.6586) and Quantum Resource Theories by Eric Chitambar and GG in Reviews of Modern Physics (91/025001, 2019) set the scene for Linear Growth of Quantum Circuit Complexity by Jonas Haferkamp, et al in Nature Physics (18/528, 2022), General Quantum Resource Theories by Kohdai Kuroiwa and Hayala Yamasaki (2002.02458), The First Law of General Quantum Resource Theories by Carlo Sparacian in Quantum (4/259, 2020), and Resource Theory of Quantum Uncomplexity by Nicole Yunger Halpern, et al (2110.11371).

The second law of thermodynamics is among the most sacred in all of science, but it has always rested on 19th century arguments about probability. New arguments trace its true source to the flows of quantum information. (Summary)

Yet physicists don’t just want descriptions of what will probably happen. Can the second law be tightened up into more than just a statement of likelihoods? A number of independent groups appear to have done just that. They have woven the second law out of the fundamental principles of quantum mechanics, which may have directionality and irreversibility built into them at the deepest level. According to this view, the second law comes about not because of classical probabilities but because of quantum effects such as entanglement. And it arises from from the most natural basis that we know of — the quantum resource of information. (1)

Crucially, the quantum informational approach suggests a way of getting rid of the statistical picture that bedevils the classical view, where you have to take averages over ensembles of many different microstates. “The true novelty with quantum information came with the understanding that one can replace ensembles with entanglement with the environment,” said Carlo Maria Scandolo of the University of Calgary. (5)

Quantum resource theories allow a kind of zooming in on the fine-grained details of the classical second law. We don’t need to think about huge numbers of particles; we can make statements about what is allowed among just a few of them. When we do this, said Nicole Yunger Halpern, it becomes clear that the classical second law is just a kind of coarse-grained sum of a whole family of inequality relationships. (6)

Binder, Felix, et al, eds. Thermodynamics in the Quantum Regime. International: Springer, 2021. This new collection is a good example that nature’s deep domain has become recognized as a substantial field in this energetic regard. It opens with Introduction to Quantum Thermodynamics by Robert Alicki and Ronnie Kosloff, which can be PDF downloaded from the Springer site.

Quantum Thermodynamics is a novel research field which explores its basis in quantum theory and addresses such phenomena which appear in finite-size, non-equilibrium and finite-time contexts. Blending elements from open quantum systems, statistical mechanics, many-body physics, and information theory, it pinpoints thermodynamic advantages and barriers emerging from quantum coherence and correlations. In six sections the book covers topics such as quantum heat engines and refrigerators, fluctuation theorems, the emergence of thermodynamic equilibrium, strongly coupled systems, as well as various information theoretic approaches including Landauer's principle and thermal operations.

Carollo, Federico, et al. Quantum Thermodynamics of Boundary Time-Crystals. arXiv:2306.07330. We cite this entry by University of Tubingen, University of Montpelliier, and Queen’s University, Belfast physicists as a way to convey in 2023 how all of nature’s substantial and energetic phases and properties are coming together into a single, unified vitality that we curious Earthlings seem lately meant discover, decipher and continue forth.

Time-translation symmetry breaking is a mechanism for the emergence of non-stationary many-body phases as so-called time-crystals in open quantum systems. An array of aspects have been studied over recent years, but less is known about thermodynamic properties, also due to their nonequilibrium nature. Here, we analyze heat currents, power exchange and irreversible entropy production. Our work sheds light on the thermodynamic cost of sustaining nonequilibrium time-crystalline phases.

Dann, Roie and Ronnie Kosloff. Unification of the First Law of Quantum Thermodynamics. arXiv:2208.10561. Hebrew University of Jerusalem provide an array of latest clarifications as studies of nature’s energies from the 19th century now become expansively integrated with this deep physical basis.

Underlying the classical thermodynamic principles are analogous microscopic laws, arising from the fundamental axioms of quantum mechanics. These define thermodynamic variables such as quantum work and heat and the transformations of open quantum systems. Yet an ambiguity and disagreement exists regarding such features. By treating quantum mechanics as a comprehensive theory, along with dynamical symmetries, we sort our several versions of the first law such as semi-classical formulations, which define work in terms of an ensemble average, as well as the single shot paradigm, where work is defined as a deterministic quantity. (Excerpt)

Elouard, Cryil, et al.. Extending the Laws of Thermodynamics for Arbitrary Autonomous Quantum Systems.. PRX Quantum. 4/020309, 2023. INRIA and CNRS, Lyon, France physicists contribute more technical reasons by which to appreciate that nature’s deepest substantial phase can exhibit the same classical, three law macro realm, as my 1960 engineering textbook did for steam power plants.

Originally formulated for macroscopic machines, the laws of thermodynamics were recently found to hold for quantum systems coupled to ideal sources of work (external classical fields) and heat (systems at equilibrium). Here we show that energy exchanges between arbitrary quantum systems are well structured by standard principles. We first generalize the second law and identify work and heat exchanges. We illustrate our general laws whereby the roles of heat and work sources are played by elementary quantum systems. Our results open perspectives unto the energetic performances of realistic quantum devices, at any scale. (Excerpt)

Faist, Philippe. Quantum Coarse Graining: An Information-Theoretic Approach to Thermodynamics. arXiv:1607.03104. A 300 page thesis for a Doctor of Sciences degree from ETH Zurich which we record in 2016 to evince that beyond fixations on the 19th century entropic second law, as popular writings do, articulations of thermodynamic theory continue in the present day.

We investigate fundamental connections between thermodynamics and quantum information theory. First, we show that the operational framework of thermal operations is nonequivalent to the framework of Gibbs-preserving maps, and we comment on this gap. We then introduce a fully information-theoretic framework generalizing the above by making further abstraction of physical quantities such as energy. In the case of information processing on memory registers with a degenerate Hamiltonian, the answer is given by the max-entropy, a measure of information known from quantum information theory. In the general case, we obtain a new information measure, the "coherent relative entropy", which generalizes both the conditional entropy and the relative entropy. We then present how, from our framework, macroscopic thermodynamics emerges by typicality, after singling out an appropriate class of thermodynamic states possessing some suitable reversibility property. A natural thermodynamic potential emerges, dictating possible state transformations, and whose differential describes the physics of the system. Finally, noting that quantum states are relative to the observer, we see that the procedure above gives rise to a natural form of coarse-graining in quantum mechanics: Each observer can consistently apply the formalism of quantum information according to their own fundamental unit of information. (Abstract excerpts)

Gemmer, Jochen, et al. Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Berlin: Springer, 2012. Physicists from Germany and England explore the latest theories as to how thermodynamic phenomena, both linear equilibrium and nonlinear far from equilibrium, could be seen to spring from, and be explained by, a spontaneous quantum phase source.

This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium - with equilibrium characterized by maximum ignorance about the open system of interest - neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten.

Goold, John, et al. The Role of Quantum Information in Thermodynamics: A Topical Review. Journal of Physics A. 49/14, 2016. Five physicists with postings in Italy, Spain, Switzerland and the UK contribute forty pages to this whole scale revision of what constitutes nature’s deepest phase. It’s course spans from a rudimentary 20th century strangeness onto energetic and communicative features similar to every other universe stage and instance. See also Quantum and Information Thermodynamics by Philipp Strasberg, et al in Physical Review X (7/2, 2017).

This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world. (Abstract)

1 | 2 | 3  Next