(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VI. Earth Life Emergence: A Development of Body, Brain, Selves and Societies

3. Microbial Colonies

    Individual bacteria, such as the amoeba or paramecium we met in school, were long thought to act as isolated, competive entities. But as lately advised by the nonlinear theories, microbes are now understood to exist and prosper within social assemblies engaged in constant chemical dialogue. Such microbial communities are often seen as an exemplary model of a complex adaptive system. This image of a self-organizing bacterial community is from the website (http://star.tau.ac.il/~eshel/gallery.html) of the prime researcher in this regard Eshel Ben Jacob, Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University, Israel.

 
     

Adamatzky, Andy, et al. On Creativity of Slime Mold. International Journal of General Systems. 42/5, 2013. Over past decades and years, against an academic ban on the projection of human traits to animal fauna, “anthropomorphic” validations are indeed being traced across creaturely kingdoms to their ancient evolutionary origins. Here University of the West of England, University of Greenwich, and University of Kobe, Japan, computational microbiologists find group living primordial bacteria to possess an intrinsic modicum of smart cohabitation. What is seen as amazing is that this bacterial, prokaryotic realm seems able to react and adapt on its own so as to survive and prosper. Section 2 is titled “Intelligence of Slime Molds and Morphological Meaning.”

Slime mould Physarum polycephalum is large single cell with intriguingly smart behaviour. The slime mould shows outstanding abilities to adapt its protoplasmic network to varying environmental conditions. The slime mould can solve tasks of computational geometry, image processing, logics and arithmetics when data are represented by configurations of attractants and repellents. We attempt to map behavioural patterns of slime onto the cognitive control versus schizotypy spectrum phase space and thus interpret slime mould's activity in terms of creativity. (Abstract)

Plasmodium's foraging behaviour can be interpreted as a computation as follows. Data are represented by spatial configurations of attractants and repellents. Results are represented by the structure of the protoplasmic network. Plasmodium can solve computational problems with natural parallelism, e.g. related to shortest path and hierarchies of planar proximity graphs, computation of plane tessellations, execution of logical computing schemes, planar shapes and concave hulls, and natural implementation of spatial logic and process algebra. (442)

Almaas, E., et al. Global Organization of Metabolic Fluxes in the Bacterium Escherichia coli. Nature. 427/839, 2004. Which the authors take to indicate a universal scale-invariant, power-law topology in cellular metabolism networks.

Andrews, John. Bacteria as Modular Organisms. Annual Review of Microbiology. 52/105, 1998. A recurrent, iterative modularity is proposed to characterize microbial and cellular assemblies.

Armitage, Judith, et al. “Neural Networks” in Bacteria. Journal of Bacteriology. 187/1, 2005. A report about the May 2004 European Science Foundation conference on “Bacterial Neural Networks” held in San Feliu, Spain. Please compare this work with Stephen Read’s neural net model for human personality, as examples how this version of a complex adaptive system is being realized across disparate realms. All of which may infer our universe as a grand learning experience that we participate in.

Bassler, Bonnie. Cell to Cell Communication. Proceedings of the American Philosophical Society. 154/3, 2010. In a paper accessed together with Tom Misteli’s Scientific American genome article, the Princeton University biologist and finder of microbial “quorum sensing,” (see her Publications page) explains that by this emerging view of bacterial cooperation, as per the quote, microbes seem to be acting as if they know what needs to be done. As this phenomena is strikingly similar to Misteli’s cell nucleus, it might appear as if both domains are moved by the same self-organizing source.

What the bacteria are doing with this chemical language is counting one another, recognizing when they have a proper number of neighbors present, so that if they all act together, they will be able to accomplish tasks they could never accomplish if they simply acted as individuals. Using this chemical mechanism, bacteria are acting as a collective; in essence, the actions of these groups of cells are similar to the way groups of cells act together in multicellular organisms. Because bacteria have been here for billions of years, we now know that the ability to carry out collective behaviors is ancient. Thus, bacteria invented multicellularity long ago. (308)

Bassler, Bonnie. Small-Talk: Cell-to-Cell Communication in Bacteria. Cell. 109/4, 2003. The constant complementarity of autonomous individual and communal group is evident even in this prokaryotic phase.

In a process called quorum sensing, groups of bacteria communicate with one another to coordinate their behavior and function like a multicellular organism. A diverse array of secreted chemical signal molecules and signal detection apparatuses facilitate highly productive intra- and interspecies relationships. (421)

Ben Jacob, Eshel. Social Behavior of Bacteria: From Physics to Complex Organization. European Physical Journal B. 65/3, 2008. In a special issue on Ecological Complex Systems, Prof. Ben Jacob continues to explain how microbial communities both exemplify a universal self-organization, and in so doing, exhibit a modicum of responsive intelligence. Such proper understanding it is said will better aid drug design and agriculture.

I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). (315)

Ben Jacob, Eshel, et al. Bacterial Linguistic Communication and Social Intelligence. Trends in Microbiology. 12/8, 2004. An update on the discovery that microbes not only live in self-organized, hierarchical, cooperative communities, but express a collective modicum of intelligence. We note once again that this prokaryotic realm provides an archetypal example of the universal complex system at work which persistently develops toward emergent, individual cognizance.

Ben-Jacob, Eshel. Bacterial Self-organization. Philosophical Transactions of the Royal Society of London A. 361/1283, 2003. Ben-Jacob further articulates how the busy microbes provide an exemplary expression of complex emergence at work. What is notable is that at this elementary phase, both for evolution and living systems, the incentive to organize into larger groups actually enhances the welfare of its members, a good example early on of creative union. In an Epilogue he goes on to suggest that cognitive processes are a similar case of self-generated, cooperative freedom.

The ‘smart’ bacteria have ‘realized’ (over evolution) that increasing informative communication between individuals results in increased freedom and cooperation of the individuals. (1285)

Ben-Jacob, Eshel. Bacterial Wisdom, Godel’s Theorem and Creative Genomic Webs. Physica A. 248/57, 1998. Tel Aviv University biologist Ben-Jacob is a pioneer in applying complexity principles to the microbial realm. The “complex colonial patterning as an example of adaptive self-organization” is seen to possess self-reference, information, and a modicum of awareness. As an assembly of microbes interact with “mutual dependence” through a common “language,” they give rise to a distinct communal “self.”

My proposed solution to the above paradox (Darwinism vs. Vitalism) leads to a new evolutionary picture where progress is not the result of successful accumulation of mistakes in replication of the genetic code, but is rather the outcome of designed creative processes. (58)

Ben-Jacob, Eshel. Learning from Bacteria about Natural Information Processing. Annals of the New York Academy of Science. Vol. 1178, 2009. In the edition Natural Genetic Engineering and Natural Genome Editing, an exemplary paper from the Tel Aviv University biophysicist upon how well microbial colonies imbue and epitomize complex, self-organizing, modular networks. By these reciprocities they achieve a modicum of social intelligence that displays a distributed, neural-like cognition and collective decision making, indeed a colonial “super-brain.”

Ben-Jacob, Eshel, et al. Bacterial Survival Strategies Suggest Rethinking Cancer Cooperativity. Trends in Microbiology. 20/9, 2012. Biophysicists Ben-Jacob, Tel-Aviv University, Herbert Levine, Rice University, and Donald Coffey, Johns Hopkins School of Medicine, each a noted authority, make a strong case for affinities between microbial collectives and cancerous cells, based on recent findings. As this section documents, bacterial communities are often seen as iconic self-organizing complex adaptive systems, with an especial knack for intelligent responses. Since tumors are likewise perceived as “smart social cells,” they might be treatable in similar ways to the design of drugs for bacterial and viral infections. A companion post is “How Brainless Slime Molds Redefine Intelligence” by Ferris Jabr (2012 herein)

Despite decades of a much improved understanding of cancer biology, we are still baffled by questions regarding the deadliest traits of malignancy: metastatic colonization, dormancy and relapse, and the rapid evolution of multiple drug and immune resistance. New ideas are needed to resolve these critical issues. Relying on finding and demonstrating parallels between collective behavior capabilities of cancer cells and that of bacteria, we suggest communal behaviors of bacteria as a valuable model system for new perspectives and research directions. Understanding the ways in which bacteria thrive in competitive habitats and their cooperative strategies for surviving extreme stress can shed light on cooperativity in tumorigenesis and portray tumors as societies of smart communicating cells. (Abstract)

1 | 2 | 3 | 4 | 5 | 6  Next