
V. Life's Corporeal Evolution Encodes and Organizes Itself: An EarthWin Genesis Synthesis6. Dynamic Fractal Network Ecosystems
Life’s diverse creaturely communities abide in active environments such as rainforests, prairies, coral reefs, to which they need adapt and cope with. Akin to each prior stage entered so far, in our transitional time even Darwin’s tangled bank has become amenable to complex systems science so to reveal a similar, endemic order. As ecological theories advance, biota and bioregions are no longer seen to seek an equilibrium balance, but actually reside in and exemplify a farfromequilibrium, nested network and vital selforganization. These worldwise understandings of dynamic flora and fauna ecosystems guided by the same forces and forms as all else have are lately come to inform respectful mediations and to foster sustainabilities viabilities. Stochastic Models in Ecology and Evolutionary Biology. www.pd.infn.it/~maritan/veniceworkshop/veniceworkshop. An April 57, 2018 conference at the Istituto Veneto di Scienze, Venice organized by the physics, mathematics and astronomy departments of the University of Padova, namely Samir Suweis, Marco Formentin, Amos Martial, and Paolo Dai Pra (search each). Our interest is the content, venue, sponsors, but also its summary next, which is a strong, clear statement to date of the global complexity revolution as it fills in and affirms an independent, generative source as it repeats in an exemplary way at each and every scale and instance. A constant selforganized criticality ithen springs from a duality of discrete component, and dynamic interactions as they evolve and emerge from universe to human. Living systems are characterized by the emergence of recurrent dynamical patterns at all scales of magnitude. Selforganized behaviors are observed both in large communities of microscopic components  like neural oscillations and gene network activity  as well as on larger levels  as predatorprey equilibria to name a few. Such regularities are deemed to be universal in the sense they are due to common mechanisms, independent of the details of the system. This belief justifies investigation through quantitative models able to grasp key features while disregarding inessential complications. The attempt of modeling such complex systems leads naturally to consider large families of microscopic identical units. Complexity and selforganization then arise on a macroscopic scale from the dynamics of these minimal components that evolve coupled by interaction terms. (Summary) Aerts, Diederik, et al. Quantum Structure in Competing Lizard Communities. Ecological Modelling. 281/38, 2014. As the extended quotes allude, Vrije Universiteit Brussel, Polytechnika Gdanska, and University of Leicester theorists broach a number of ways that quantum phenomena, as it now becomes reinterpreted and understood in macro classical terms, are in fact evidently, at work, as they must be, in all aspects of living systems such as animal behaviors. Almost two decades of research on applications of the mathematical formalism of quantum theory as a modeling tool in domains different from the microworld has given rise to many successful applications in situations related to human behavior and thought, more specifically in cognitive processes of decisionmaking and the ways concepts are combined into sentences. In this article, we extend this approach to animal behavior, showing that an analysis of an interactive situation involving a mating competition between certain lizard morphs allows one to identify a quantum theoretic structure. We work out an explicit quantummechanical representation in Hilbert space for the lizard situation and show that it faithfully models a set of experimental data collected on three throatcolored morphs of a specific lizard species. Furthermore, we investigate the Hilbert space modeling, and show that the states describing the lizard competitions contain entanglement for each one of the considered confrontations of lizards with different competing strategies, which renders it no longer possible to interpret these states of the competing lizards as compositions of states of the individual lizards. (Abstract) Agrawal, Anurag. Community Genetics: New Insights into Community Ecology by Integrating Population Genetics. Ecology. 84/3, 2004. From a special issue on how a synthesis of these disparate approaches is bringing theoretical and practical advances. By this view, e.g., extended phenotypes and a community level heritability and selection become evident. Community genetics is the study of the interaction between genes within a species and populations of other species in a community. (543) Alados, C., et al. Selforganized Spatial Patterns of Vegetation in Alpine Grasslands. Ecological Modelling. 201/2, 2007. In the Central Pyrenees mountains , a case study example of and portal to universal nonlinear dynamics. Allen, T. P. H. and Thomas Hoekstra. Toward a Unified Ecology. New York: Columbia University Press, 1992. If ecology is to become a theoretical science, it should be based on the pervasive fractal, stratified anatomy and physiology of diverse, complex ecosystems. Allen, Timothy and Thomas Hoekstra. Toward a Unified Ecology. New York: Columbia University Press, 2015. This second edition of their 1993 classic by the University of Wisconsin botanist and a U. S. Forest Service environmentalist draws on 21st century advances to achieve a comprehensive theoretical and practical treatise. The chapters begin with Principles of Ecological Integration and proceed to Landscape, Ecosystem, Community, Organism, Population, Biome, Biosphere, Complexity narratives. The salient unifying theme and natural quality is still a fractal selfsimilarity from the smallest microbial to the largest biota scale. The first edition of Toward a Unified Ecology was ahead of its time. For the second edition, the authors present a new synthesis of their core ideas on evaluating communities, organisms, populations, biomes, models, and management. The book now places greater emphasis on postnormal critiques, cognizant of everpresent observer values in the system. The problem it addresses is how to work holistically on complex things that cannot be defined, and this book continues to build an approach to the problem of scaling in ecosystems. Provoked by complexity theory, the authors add a whole new chapter on the central role of narrative in science and how models improve them. The book takes data and modeling seriously, with a sophisticated philosophy of science. Anand, Madhur. Quantification of Biocomplexity. International Conference on Complex Systems. May 1621, 2004. A systems biologist from Laurentian University makes the notable observation that healthy ecosystems are characterized by selforganizing processes which generate a powerlaw, fractallike scaling. Disturbances can be measured by deviations from this state. The return to a viable ecosystem then requires a restoration of this dynamical, nonequilibrium condition. The abstract is available at www.necsi.org, ICCS 2004. Also check Professor Anand’s website at www.laurentian.ca/biology/MANAND/anandlab/main.html for more info and papers. Atkinson, R., et al. ScaleFree Dynamics in the Movement Patterns of Jackals. OIKOS. 98/1, 2002. A typical contribution that finds invariant mathematical processes throughout a newly knowable natural realm. Using conventional radiotracking techniques employed by field ecologists, evidence for scalefree (fractal) behavior in the foraging trajectories of a species of African jackal is presented….The methods used in this study are completely general and can be applied to other radiotracked species, thus beginning a systematic investigation of foraging strategies in mammals. (134) Azovsky, A. I., et al. Fractal Properties of Spatial Distribution of Intertidal Benthic Communities. Marine Biology. 136/3, 2006. Diatom algae inherently take on the form of a nested, selfsimilar, hierarchical community. In accordance with another hypothesis, a fractal spatial pattern is the result of community selforganization, which is then transformed into other structures (fixed patches or gradients) under the evident external (environmental) influences. If so, fractals may be a universal way of a biota’s selforganization and filling up the space. (589) Ba, Rui, et al. Analysis of Multifractal and Organization/Order Structure in SuomiNPP VIIRS Normalized Difference Vegetation Index Series of Wildfire Sites. Entropy. 22/4, 2020. Circa 2004, any perception, let alone proof, of endemic patterns by which to untangle nature were sparse at best. A worldwide decade and half later systems ecologists from China and Italy can describe, along with similar works, the actual presence of mathematic patternings in selfsimilar scalar array everywhere. One might ask and wonder again how does this deep animate order come to be, whatever agency put it there in the first place? Bailey, Joseph, et al. Fractal Geometry is Heritable in Trees. Evolution. 58/9, 2004. More quantitative insights into a universally selfsimilar nature. Here for the first time we show that the fractal architecture of a dominant plant on the landscape exhibits high broadsense heritability and thus has a genetic basis. This result provides a crucial link between genes and fractal scaling theory, and places the study of landscape ecology with an evolutionary framework. (2100) Bascompte, Jordi and Pedro Jordano. Mutualistic Networks. Princeton: Princeton University Press, 2014. Spanish Research Council theoretical ecologists provide the first booklength treatment for evolving nature’s cooperative propensity that graces all manner of flora and fauna from whelks to whales.
1  2  3  4  5  6  7  8  9  10 Next [More Pages]


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 