(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

VII. Pedia Sapiens: A Genesis Future on Earth and in the Heavens

C. An Earthropic Principle: Novel Evidence About a Special Planet

This Natural Genesis sourcesite, in its 21st century reportage as an emergent worldwise sapiensphere learns on her/his own, now posts over 3,000 pages and 7,000 entries. Today readers can peruse any scientific journal online, see Journal References (II. C. 2) for some 200 periodicals that we survey. By simply an interest to ask and see, a steady flow of evidential findings are revealing a conducive, habitable ecosmos which populates itself with solar planetary systems. But an unexpected, auspicious realization is lately beginning to dawn. As the litany of fortuitous events and features next cites, our Earthian Gaiasphere may be an optimum candidate to survive and evolve to a verge of self-recognition and sustainability.

A popular September 2018 article, Alone in the Milky Way by John Gribbin in Scientific American, noted herein, makes just this case. A full page graphic, the first of its kind, displays a series of Improbable Coincidences from the big bang through stellar formations, relative metallicity content, galactic and solar habitable zones, good timings at each bottleneck stage, vicarious surface conditions in life’s favor, early prokaryote to eukaryote cellular success, and onto the chancy evolutionary emergence of Homo sapiens with a cultural and technological civilization.

To represent its proper significance, it is proposed to expand a prior “Anthropic principle” whence cosmic, physical, and atomic parameters have precise values which allow life and people to exist (see Part III. G). An Earthropic principle amongst myriad stochastic bioworlds could stand for the unexpected discovery of a rarest temporal and spatial concatenation by which our precious bioplanet may even be one self-aware abode in a quintillion.

In regard, it is proposed to expand a prior “Anthropic principle” whence precise parameters allow life and people to exist (see Part III. G) onto a more appropriate round worldly scale. An Earthropic principle would represent these growing realizations that a rarest evolutionary concatenation has occurred by which this bioplanet is a most habitable abode, maybe one in a quintillion.

Benign G-Type Star Our sun has been on relatively good behavior for billions of years. While M red dwarfs make up some 80% of galactic stars, this preferred solar type and temperature range is more conducive for life and evolution.

Multiple Suns are Common A majority of stellar objects are found to occur in vicarious double pairings or triple combinations. Binary star regimes in constant motion are considered to be hostile, highly variable environs.

Stellar Clusters in Galaxies Another usual condition is a tendency for stars to cluster together in fluid galactic groupings, which makes suns with orbital planets harder to form and maintain. Our star is not in a crowded area.

Stable Solar System Our own warm sun with an array of eight distinct worlds has experienced a rare long-term stability. A ninth outer planet or more is seen as disruptive. Most exosolar arrays found so far exhibit all manner of chaotic instabilities.

Unique Orbital Geometries For another anomaly, our familiar orrery of worlds all lie in the same plane, with mostly well spaced, circular orbits. A Bohr atom type swarm of planets every which way, often close in, is more prevalent.

Solar Habitable Zone Precious Earth resides in a relatively benign middle location from the sun between fried too near and frozen far out. So situated, its daily rotation and 365 day annual orbit are very conducive.

Galactic Habitable Zone The solar system is located half way from a prohibitive center and too far outer bands. By virtue, beneficial metallicities can occur in the sun and for planetary accretions.

Jupiter’s Journeys This orderly milieu is due to past movements of the gas giant Jupiter in toward the sun and back again. This is known as a “grand tack,” which served to remove a usual inner crush of rocky worlds, leaving only Mercury.

Rare Ratio of Land and Water Among thousands of exoworlds found so far, Earth has a unique 30 – 70 % division of dry land and ocean over a long time. A more usual state, e.g. Mars and Venus, and through the galaxy, is a default to all arid, wet/icy, or gaseous.

Plate Tectonics Still another rarity is the past movement and contact of continental land masses over many millions of years. Their geological and climatic dynamics are seen to foster evolutionary development, which a stationary mantle would not do.

A Timely Oxygenated Atmosphere Earth life’s embryonic biosphere was able to achieve at an early age (Gaian bottleneck) a stable optimum of a 21% oxygen and 78% nitrogen balance. Below 15% or above 25% oxygen would starve or burn environments and organisms.

Asteroid Impact Rates By many paleo-studies, it has been found that Earth sustained a tolerable degree of asteroid hits, while the more usual rain of many more collisions which would be catastrophic to life and intelligence able to learn all this.

An Ideal Moon However it happened, Earth has had a largish moon in just the right place for a long duration. Its presence then causes moderate tidal flows and basins to foster stromatolites and cyanobacteria at life’s origins, go onto mediate weather, light up a dark night for hominins, and more favors.

A Good Axial Tilt for Seasons Earth’s polar axis goes through a 23.5 degree swing each year, aka obliquity, which causes vital seasonal variations. While a 10 to 50 degree range may harbor life, a spring, summer, autumn, winter cycle seems well suited.

Arboreal Tree Height As evident on Earth, life’s evolution was fostered by the right amount of ground water so that fertile forests could grow to an optimal size.

Planetary Magnetism Earth has maintained liquid surface water and an airy atmosphere over eons aided by a strong magnetic dipole moment. Other planets such as Venus and Mars do not have this vital feature.

Stellar Spectral Energy Radiance As a sun shines, it must do so at an appropriate rate over a long time span so that life on a habitable, orbital world can evolve from simple to complex entities like us.

We post next a sample of salient citations in support of these auspicious qualities. Please browse Astrobiology, Exoearths, Green Galaxy, and throughout for more reports.

Angier, Natalie. The Earth’s Shell has Cracked, and We’re Drifting on the Pieces. New York Times. December 18, 2018. The popular science writer draws upon a Royal Society meeting about plate tectonics and Philosophical Transactions A issue from it (see Robert Stern herein for more) about how our home planet has been distinguished and enlivened by mobile continental forms over a billion years, while Venus and many other worlds have not. It is noted that this ancient surface balance of land and sea is vitally crucial for a planet to become habitable for life and evolution. She consulted with R. Stern (UT Dallas), Jun Korenaga (Yale), Aubrey Zerkle (St. Andrews, Scotland)), and others as this rare Earth crustal and oceanic interplay grows in significance.

This volume brings together contributions from the Royal Society Discussion Meeting on ‘Earth dynamics and the development of Plate Tectonics’ held in March 2018. Plate tectonics is not seen on other planets, so why does it occur on Earth, and when did it start? The nature of tectonics depends on initial conditions, mantle thermal states, and an ability to weaken the lithosphere to allow plate boundaries to form. Geodynamic models, rock deformation experiments, models for growth of the continental crust, and evidence from the rock record are consistent with the development of plate tectonics from a single-lid state. Major changes occurred in the geological record near the end of the Archaean, suggesting that plate tectonics had become the dominant gobal regime by the Proterozoic. Modern plate tectonics and the generation of stable continents were key events in the evolution of the biosphere on Earth, and similar tectonic processes could be crucial for the development of habitability of exoplanets. (Synopsis)

Arnould, Jacques. Astrobiology, Sustainability and Ethical Perspectives. Sustainability. 1/4, 2009. In this online journal which has become a home for authoritative writings about saving the planet, a CNES French Space Agency philosopher contends that an expansive panorama that views earth and human in the context of a conducive, life friendly cosmos could be of much utility and incentive.

Astrobiology, a new field of research associating the prospects and constraints of prebiotic chemistry, mineralogy, geochemistry, astrophysics, theoretical physics, microbial ecology, etc., is assessed in terms of sustainability through the scientific and social functions it fulfils, and the limits it encounters or strives to overcome. In the same way as sustainable development, astrobiology must also take into account the temporal dimension specific to its field of investigation and examine its underlying conception of Nature. (Abstract)

Barnes, Luke. Testing the Multiverse: Bayes, Fine-Tuning and Typicality. arXiv:1704.01680. Reviewed more in Anthropic Principle, the University of Sydney astronomer (search) posts his presentation at a 2014 London Philosophy of Cosmology conference. As a coauthor with Geraint Lewis of A Fortunate Universe (2016), this entry discusses anthropic themes along with Bayesian “theory testing” methods for better iterations of “relative certainties or credences.” For this Greatest Earth section, it is wondrous that inquisitive, globally cognizant peoples can imagine whole cosmoses at all. With 400th anniversary events underway for Galileo, what can these expansive vistas from our moon to a multiverse ever portend? As latest currents seem to presage, human beings ought to have a significant purpose in the actual scheme of things.

Barnes, Rory. Tidal Locking of Habitable Exoplanets. Celestial Mechanics and Dynamical Astronomy. 129/4, 2017. A University of Washington astronomer quantifies one more crucial condition as to whether a candidate orbital world could harbor living, evolving systems, or be prohibitively hostile to it. Since this Earth has been benign long enough to reach our global observation, its tidal regime, in accord with the moon and sun, must have been fortuitous. See also Niche Amplitude, Tidal Locking and Fermi’s Paradox and Evolutionary Exobiology II by David Stevenson in the International Journal of Astrobiology (Each online July 2018).

Potentially habitable planets can orbit close enough to their host star that the differential gravity across their diameters can fix the rotation rate at a specific frequency, a process called tidal locking. Tidally locked planets on circular orbits will rotate synchronously, but those on eccentric orbits will either librate or rotate super-synchronously. Lower mass stellar hosts will induce stronger tidal effects on potentially habitable planets, and tidal locking is possible for most planets in the habitable zones of GKM dwarf stars. These results suggest that the process of tidal locking is a major factor in the evolution of most of the potentially habitable exoplanets to be discovered in the near future. (Abstract excerpt)

Tidal locking is the name given to the situation when an object’s orbital period matches its rotational period. A great example of this is our own Moon. The moon takes 28 days to go around the Earth and 28 days to rotate once around it’s axis. This results in the same face of the Moon always facing the Earth. We see other examples of this in our solar system and universe. An extreme example is the case of Pluto and Charon. Charon is such a large satellite compared to Pluto that they are tidally locked together. (spaceanswers.com)

Batygin, Konstantin and Greg Laughlin. Jupiter’s Decisive Role in the Inner Solar System’s Early Evolution. Proceedings of the National Academy of Sciences. 112/4214, 2015. As the rush of Kepler satellite findings become assimilated, radical new understandings of near and far stellar-planetary topological and dynamical arrays are being realized. Here Cal Tech and UC Santa Cruz astronomers report another way that our home system is unusual because this gas giant served to sweep away an original phase of close in worlds that often wreak instabilities. A commentary in the same issue by Smadar Naoz notes that our “unique” arrangement is a “second generation” sequence. Along with nine planets in the same plane with circular orbits for over a billion years, it is dawning that we Earthlings abide in a rare, especially conducive, habitable zone.

The Solar System is an unusual member of the galactic planetary census in that it lacks planets that reside in close proximity to the Sun. In this work, we propose that the primordial nebula-driven process responsible for retention of Jupiter and Saturn at large orbital radii and sculpting Mars’ low mass is also responsible for clearing out the Solar System’s innermost region. Cumulatively, our results place the Solar System and the mechanisms that shaped its unique orbital architecture into a broader, extrasolar context. (Significance)

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets. (Abstract)

Batygin, Konstantin, et al. Born of Chaos. Scientific American. May, 2016. Astrophysicists Batygin, Gregory Laughlin and Alessandro Morbidelli (search) write a popular article about the dynamic formation of the solar system and of our planet Earth just now being reconstructed, which all leads to an auspicious realization. In this post-Kepler satellite and worldwide collaborative era, it has been found that prolific arrays of orbital objects typically exhibit a contingent jumble of small rocky to giant gaseous planets in every which disordered location, especially close in to the host star. But our home solar community has a rare, well-spaced procession from one small Mercury to Venus, Earth and Mars onto larger outer worlds. Over its history, the planet Jupiter first moved toward the sun which cleaned out planetesimals and super-Earths, except for Mercury. It then tacked outward which led to further destructions or expulsions. See also Jupiter’s Decisive Role in the Inner Solar System’s Early Evolution by Batygin and Laughlin in the Proceedings of the National Academy of Sciences (112/4214, 2015) and the third quote.

In Brief: A wealth of new evidence from computer simulations as well as observations of planets throughout the galaxy is revealing new details of our solar system’s dynamic and violent history. The solar system’s configuration of small inner rocky worlds and large outer giants is anomalous in comparison with most other planetary systems, which have different architectures. (30)

Like strands of DNA, that on sequencing, reveal the story of humankind’s ancient migrations across the surface of our small planet, astronomical clues have permitted our computer simulations to reconstruct the planets’ majestic wanderlust during the solar system’s multibillion-year lifetime. From its birth in roiling molecular clouds, to the formation of its first planets, to the world-shattering growing pains of the Grand (At)Tack and the Nice (Cote d’Azur Observatory) model, to the emergence of life and sentience around at least one sun in the vast Milky Way, the complete biography of our solar system will be one of the most significant accomplishments in modern science—and undoubtedly one of the greatest stories that ever can be told. (37)

The Solar System is an unusual member of the galactic planetary census in that it lacks planets that reside in close proximity to the Sun. In this work, we propose that the primordial nebula-driven process responsible for retention of Jupiter and Saturn at large orbital radii and sculpting Mars’ low mass is also responsible for clearing out the Solar System’s innermost region. Cumulatively, our results place the Solar System and the mechanisms that shaped its unique orbital architecture into a broader, extrasolar context. (B & L Significance)

Beech, Martin. On Special Epochs, the Copernican Principle and Future Astronomy. Journal of the Royal Astronomical Society of Canada. April, 2015. The University of Regina, Saskatchewan astronomer and author (search) takes issue with the popular overuse of this “principle” which has come to designate a steady historic removal of human beings, planet Earth, its solar system, and even the Milky Way from any central, unique location or import. As a starter Nikolai himself would not agree nor would he approve this version in his name. From circa 2015, the latest cosmological findings, not possible earlier, are in fact finding people, bioplanet, sun, and galaxy to be unusually favorable in orbital geometries and benign duration. See also Since When Was the Sun a Typical Star? by MB in this journal for December 2011. Here is one more instance of a cosmic paradigm shift in our midst (e.g. Giulio Tononi, Cadell Last, many others) from denunciations of human and universe to realizations of a phenomenal place and purpose.

As described in an earlier article (Beech 2011), for example the blind acceptance of the Copernican Principle has resulted in the entirely wrong concept being propagated within popuar astronomy texts that the Sun and Solar System are in every way average, even bland and/or typical. They patently are not average in many demonstrable ways, and our seemingly modern fear of allowing for special circumstances and the existence of unique structures, events, epochs and has, in effect, led our collective understanding astray. Not only, in fact, is the Solar System located at a very specific and special place within our galaxy, we also live in a very special epoch within the history of the Universe. Indeed, we live in the epoch in which humanity is able to determine and at least partially comprehend the full scale of the observable Universe. (63-64)

Broad, William. In Secrets of Coral Spawning, Hope for Endangered Reefs. New York Times. June 21, 2016. We note this Science Times piece about large coral reefs which engage in an annual procreative event of spewing trillions of eggs at once into the ocean so that at least some may become fertile and grow anew. This is a stretch, but might one then imagine a coral cosmos whence trillions of vicarious bioworlds might take on a similar ovular guise, so that a few fittest might succeed?

Burov, Alexey and Lev Burov. Genesis of a Pythagorean Universe. arXiv:1411.7304. We report this posting from a Fermi National Accelerator Laboratory physicist and a Scientific Humanities, San Francisco, imagineer because it offers a unique perspective on the breadth and depth of cosmic reality. After noting the fine-tuned Anthropic Principle fades into a multiverse chaosogenesis, it is proposed that nature’s most awesome aspect ought to be our very human ability to learn and describe everything from bosons to universes. This vista then grants phenomenal people an intentional, central role as Cosmic Observers.

Carlisle, Camille. Cosmic Collisions. Sky & Telescope. December, 2012. Into this 21st century what vistas have earthlings come to, what are we risen mortals altogether capable of. This article suggests that it may amazingly be possible to detect signs of other, intermeshing universes by finessing data findings from the CMB and WMAP satellites. Might we then imagine that valiant human beings have something to do with the success or failure of the entire cosmos, if by common vision, we could so witness and self-select?

Chiribella, Giulio, et al. Quantum Theory, Namely the Pure and Reversible Theory of Information. Entropy. 14/11, 2012. Also cited in Information-Computation, Chiribella, now Center for Quantum Information, Tsinghua University, with Giacomo D’Ariano and Paolo Perinotti, University of Pavia, join a chorus of physicists who call for a revised “more fundamental understanding” of their field in terms of growing evidence for a natural programmic basis. As often in this regard, a reference is made to John Archibald Wheeler’s digital “It from Bit” of a self-observing, self-acknowledging, participatory cosmos. And we note here, as this entry is logged in along with Goyal, Zenil, et al, Dodig Crnkovic and Giovagnoli, and other papers, as natural philosophy they could be seen as describing, in contrast to a waning string multiverse, a profoundly vital, self-creating reality by virtue of an ascendant genetic-like guidance.

Chopra, Aditya and Charles Lineweaver. The Case for a Gaian Bottleneck: The Biology of Habitability. International Journal of Astrobiology. 16/1, 2016. If one pays attention to current findings in the scientific literature, as this website tries to report, in the past few years the cosmic nexus of our Earthly abode has attained a special statue. Planetary systems with well spaced circular orbits, all in the same plane, a rare location of outer gas giants, a stable, long duration galaxy, and a large moon, are now known as quite rare. This paper by Australian Natural University astrophysicists now adds a temporal evolutionary constraint. While biochemical, microbial life appears wherever possible, an ability to reach complex, multicellular stages is seen to require an early formation of a conducive, self-regulating atmosphere. If this does not happen, simpler life forms are extinguished by hostile conditions, the candidate bioworld becomes barren. Even if the emergence of life is a common feature of wet rocky planets throughout the Universe, the Gaian bottleneck model suggests that inhabited Earth-like planets would be rare.

The prerequisites and ingredients for life seem to be abundantly available in the Universe. However, the Universe does not seem to be teeming with life. The most common explanation for this is a low probability for the emergence of life (an emergence bottleneck), notionally due to the intricacies of the molecular recipe. Here, we present an alternative Gaian bottleneck explanation: If life emerges on a planet, it only rarely evolves quickly enough to regulate greenhouse gases and albedo, thereby maintaining surface temperatures compatible with liquid water and habitability. Such a Gaian bottleneck suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surfaces of wet rocky planets in the Universe and (ii) rocky planets need to be inhabited to remain habitable. In the Gaian bottleneck model, the maintenance of planetary habitability is a property more associated with an unusually rapid evolution of biological regulation of surface volatiles than with the luminosity and distance to the host star. (Abstract)

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next