(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

I. Our Personphere Edition: A 21st Century, Planatural philoSophia, eLibrary of eCosmos Resource

C. Earthropo Sapience: A 2020s Convergent, Common, One Code, UniVerse to PediaVerse Genesis Synthesis

Within this Earthuman Edition: A 21st Century, PhiloSophia, eLibrary of eCosmos, PediaPedia Resource Chapter, and along with Chap. II. C. Earth Learns: A Novel Attribution to Intelligent, Self-Organizing, Personsphere, Collaborations this new modular section will seek to gather and highlight premier contributions into the 2020s so far. Our intent is to identify and report upon a wide array of convergent. integral advances just now possible. Altogether they testify to and can represent an imminent revolutionary synthesis.

A Global and Galactic Glossary

This 2022 Year I write in June a war of senseless slaughter war grinds on at the same while that scientific revelations of salutary local, global and universal import converge, brace, confirm, and empower.

Our Earthuman Once again, into the decade this epochal attribution can be rightly made as scientific studies begin to go forth on a planetary scale. But a second culture of natural philoSophia which can envision an abiding presence and purpose remains to be added.

Convergent Discovery Event Our timely premise is that around 2020, as the many references attest, a grand historic coming together of findings from physics to cultures is much underway.

UniVerse to WumanVerse Altogether this content, if we might observe and allow so to move beyond and free from pointless,particles, can reveal such a fecund, encoded familiality.

ProCreation Once again such an individual to infinity self-similar correspondence of parents to children reproductivity does actually exist.

Select References for a 2020 - 2022 Integrative Discovery Event

Alser, Mohammed, et al. Going from Molecules to Genomic Variations to Scientific Discovery. arXiv:2205.07957.
Araujo, Nuno, et al. Steering Self-Organization through Confinement. arXiv:2204.10059.
Artime, Oriol and Manlio De Domenico. From the Origin of Life to Pandemics: Emergent Phenomena in Complex Systems. Philosophical Transactions of the Royal Society A. May 2022.
Aschwanden, Markus. The Fractality of Astrophysical Self-Organized Criticality. arXiv:2203.12484.

Ball, Philip. Physicists Rewrite the Fundamental Law that Leads to Disorder. Quanta. May 26, 2022.
Barzon, Giacomo, et al. Criticality and Network Structure Drive Emergent Oscillations in a Stochastic Whole-Brain Model. Journal of Physics: Complexity. 3/3, 2022.
Bogdan, Paul, et al. Biological Networks Across Scales. Integrative & Comparative Biology. 61/6, 2021.
Bowick, Mark, et al. Symmetry, Thermodynamics and Topology in Active Matter. Physical Review X. February, 2022.
Boyle, Rebecca. Astronomers Reimagine the Making of the Planets. Quanta. June 6, 2022.
Butler, Travis and Georgi Georgiev. Self-Organization in Stellar Evolution. arXiv:2202.02318.

Canup, Robin and Philip Christensen, Co-Chairs. Origins, Worlds and Life: A Decadal Strategy for Planetary Science and Astrobiology. Washington, DC: National Academy of Sciences, 2022.
Carbone, Anna, et al. Journal of Physics: Complexity. June, 2022.
Cavagna, Andrea, et al. Natural Swarms in 3.99 Dimensions. arXiv:2107.04432.
Cejkova, Jitka and Julyan Cartwright. Chembrionics and Systems Chemistry. ChemSystemsChem. 4/3, 2022.
Chanu, Athokpam, et al. Analysis of the Structural Complexity of Crab Nebula Observed at Radio and Infrared Frequencies using a Multifractal Approach. arXiv:2206.04717.
Costa, Luciano. Coincidence Complex Networks. Journal of Physics: Complexity. 3/1, 2022. On Similarity. arXiv:2111.02803.
Czegel, Daniel, et al. Bayes and Darwin: How Replicator Populations Implement Bayesian Computations. BioEssays. 44/4, 2022.

Dambricourt Malasse, Anne, ed.. Self-Organization as a New Paradigm in Evolutionary Biology. International: Springer, 2022.
Domingues, Guilherme, et al. City Motifs as Revealed by Similarity between Hierarchical Features. arXiv:2204.09104.

Frank, Adam, et al. Intelligence as a Planetary Scale Process. International Journal of Astrobiology. February, 2022.

Gagler, Dylan, et al. Scaling Laws in Enzyme Function Reveal a Biochemical Universality. PNAS. 119/9, 2022.
Garcia, Raquel, et al. Self-Similar Solutions for Fuzzy Dark Matter.
Garcia-Sanchez, Miguel, et al. The Emergence of Interstellar Molecular Complexity Explained by Interacting Networks. Proceedings of the National Academy of Sciences. 119/30, 2022. arXiv:2203.05995.
Ge, Xiaofei, et al. arXiv:2204.08627.
George, Ashish, et al. Functional Universality in Microbial Communities Arises from Thermodynamic Constraints. arXiv:2203.06128.
Ginsburg, Simona and Eva Jablonka. Picturing the Mind: Consciousness through the Lens of Evolution. Cambridge: MIT Press, 2022.
Gosak,, Marko, et al. Networks Behind the Morphology and Structural Design of Living Systems. Physics of Life Reviews. March, 2022.
Grossberg, Stephen. Conscious Mind, Resonant Brain: How Each Brain Makes a Mind. New York: Oxford University Press,, 2022.

Hausmann, Markus, et al. Laterality Entering the Next Decade: The 25th Anniversary of a Journal Devoted to Asymmetries of Brain, Behavior and Cognition. Laterality. 26/3, 2021.
Heylighen, Francis. The Meaning and Origin of Goal-Directedness: A Dynamical Systems Perspective. Biological Journal of the Linnean Society. July, 2022.
Holford, Mande and Benjamin Normark. Integrating the Life Sciences to Jumpstart the Next Decade of Discover. Integrative & Comparative Biology. 61/6, 2021
Hynes, William, et al. Systemic Resilience in Economics. Nature Physics.18/4, 2022.

Ippoliti, Xiao, et al. Observation of Time-Crystalline Eigenstate Order on a Quantum Processor. arXiv:2107.13571.

Jagiello, Robert, et al. Tradition and Invention: The Bifocal Stance Theory of Cultural Evolution. Behavioral and Brain Sciences. April, 2022.
Jusup, Marko, et al. Social Physics. arXiv: 2110.01866.

Kelso, Scott. On the Coordination Dynamics of (animate) Moving Bodies. Journal of Physics: Complexity. 3/3, 2022.
Koksal, Elif, et al. Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Pre-Noachian Mars. ChemSystemsChem. 4/3, 2022.
Krenn, Mario, et al. On Scientific Understanding with Artificial Intelligence. arXiv:2204.01467.
Kuppers, Bernd-Olaf. The Language of Living Matter: How Molecules Acquire Meaning. International: Springer Frontiers, 2021.
Kverkova, Kristina et al. The Evolution of Brain Neuron Numbers in Amniotes. PNAS. 119/11, 2022.

Lavin, Alexander, et al. Simulation Intelligence: Towards a New Generation of Scientific Methods. arXiv:2112.03235.
Liang, Junhao and Changsong Zhou. Criticality Enhances the Multilevel Reliability of Stimulus Responses in Cortical Neural Networks. PLOS Computational Biology.. January 2022.
Liu, Jiazhen, et al. The Emergence of Polarization in Coevolving Networks. arXiv:2205.14480.

Marshall, Stuart, et al. Formalizing the Pathways to Life using Assembly Spaces. Entropy. 24/7, 2022.
Menichetti, Giulia and Albert-Laszlo Barabasi. Nutrient Concentrations in Food Display Universal Behavior. Nature Food. 3/375, 2022.
Munoz, Victor and Eduardo Flandez. Complex Network Study of Solar Magnetograms. Entropy. 24/6, 2022.

Newman, Stuart. Self-Organization in Embryonic Development. arXiv:2108.00532
Nguyen, Thank, et al. Spatial Patterns of Urban Landscapes in the Indian Punjab are Predicted by Fractal Theory. Nature Scientific Reports. 12/1819, 2022.

Olse,, Stephanie, et al. The Effect of Ocean Salinity on Climate and its Implications for Earth’s Habitability. arXiv:2205.06785.
Ouellette, Nicholas. A Physics Perspective on Collective Animal Behavior. Physical Biology. 19/2, 2022.

Rao, Riccardo and Stanislas Leibler. Evolutionary Dynamics, Evolutionary Forces, and Robustness: A Nonequilibrium Statistical Mechanics Perspective. PNAS. 119/13, 2022.

Sanchez-Puig, Fernanda, et al. Heterogeneity Extends Criticality. preprints.org/manuscript/202208.0058/v1. August 2022.
Sarkanych, Petro, et al. Network Analysis of the Kyiv Bylyny Cycle – East Slavic Epic Narratives. arXiv:2203.10399.
Shettigan, Nandan, et al. On the Biophysical Complexity of Brain Dynamics. Dynamics. 2/2, 2022.
Shishkov, Olga and Orit Peleg. Social Insects and Beyond: The Physics of Soft, Dense Invertebrate Aggregations. arXiv:2206.11129
Souza, Barbara, et al. Text Characterization Based on Recurrence Networks. arXiv:2201.06665.
Synder-Beattie, Andrew, et al. The Timing of Evolutionary Transitions Suggests Intelligent Life is Rare. Astrobiology. November, 2020.
Sormunen, Silja, et al. Critical Drift in a Neuro-Inspired Adaptive Network. arXiv:2206.10315.

Tadic, Bosiljka and Roderick Melnik. Self-Organized Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological and Social Networks. Dynamics. 2/2, 2022.
Teuscher, Christof. Revisiting the Edge of Chaos. Biosystems. May 2022.
Tomasello, Michael. The Evolution of Agency: Behavioral Organization from Lizards to Humans. Cambridge: MIT Press, 2022.
Tononi, Giulio, et al. Only What Exists can Cause: An Intrinsic View of Free Will. arXiv:2206.02069.
Toriumi, Shin and Vladimir Airapelian. Universal Scaling Laws for the Solar and Stellar Atmospheric Heating. arXiv:2202.01232.

Vujovic, Filip, et al. Cellular Self-Organization: An Overdrive in Cambrian Diversity? BioEssays. July 2022.

Weiss, Lauren, et al. Architectures of Compact Multi-planet Systems. arXiv:2203.10076.
Wilkerson, Galen, et al. Spontaneous Emergence of Computation in Network Cascades. arXiv:2204.11956.
Wilson, Matt and Giulio, Chilibella. A Mathematical Framework for Transformations of Physical Processes. arXiv:2204.04319.
Wood, Charlie. How to Make the Universe Think for Us.. Quanta. June 1, 2022.
Wurthner, Laeschkir, et al. Bridging Scales in a Multiscale Pattern-Forming System. arXiv:2111.12043.

Zanin, Massimiliano and Johann Martinez. Analysing International Events through the Lens of Statistical Physics: The Case of Ukraine. arXiv:2203.07403.
Zimmern, Vincent. Why Brain Criticality is Clinically Revelant. Frontiers in Neural Circuits. August, 2020.
Zolyan, Suren. From Matter to Form: The Evolution of the Genetic Code as Semio-poiesis. Semiotica. March 2022.

Ball, Philip. Physicists Rewrite the Fundamental Law that Leads to Disorder. Quanta. May 26, 2022. In this significant article, the British polyscholar science writer surveys a rush of current advances which altogether well imply an historic revision of 19th century thermodynamic theories By a novel inclusion of quantum information qualities, the entropic demise implied by the second law from Ludwig Boltzmann (1877) can be set aside and moved beyond. This wide=ranging entry builds its case by enjoining the thought and writings of key contributors such as Chiara Marletto and David Deutsch (constructor theory), along with Vlatko Vedral, Gilad Gour, Markus Muller and others.

In addition quantum physicists such as Giulio Chiribella (search), Carlo Scandolo and Nicole Yunger Halpern provide insights based on relational aspects, resource computations, networks and more. Earlier work such as The Resource Theory of Informational Nonequilibrium in Thermodynamics by Gilad Gour, et al (1309.6586) and Quantum Resource Theories by Eric Chitambar and GG in Reviews of Modern Physics (91/025001, 2019) set the scene for Linear Growth of Quantum Circuit Complexity by Jonas Haferkamp, et al in Nature Physics (18/528, 2022), General Quantum Resource Theories by Kohdai Kuroiwa and Hayala Yamasaki (2002.02458), The First Law of General Quantum Resource Theories by Carlo Sparacian in Quantum (4/259, 2020), and Resource Theory of Quantum Uncomplexity by Nicole Yunger Halpern, et al (2110.11371).

The second law of thermodynamics is among the most sacred in all of science, but it has always rested on 19th century arguments about probability. New arguments trace its true source to the flows of quantum information. (Summary)

Yet physicists don’t just want descriptions of what will probably happen. Can the second law be tightened up into more than just a statement of likelihoods? A number of independent groups appear to have done just that. They have woven the second law out of the fundamental principles of quantum mechanics, which may have directionality and irreversibility built into them at the deepest level. According to this view, the second law comes about not because of classical probabilities but because of quantum effects such as entanglement. And it arises from from the most natural basis that we know of — the quantum resource of information. (1)

Crucially, the quantum informational approach suggests a way of getting rid of the statistical picture that bedevils the classical view, where you have to take averages over ensembles of many different microstates. “The true novelty with quantum information came with the understanding that one can replace ensembles with entanglement with the environment,” said Carlo Maria Scandolo of the University of Calgary. (5)

Quantum resource theories allow a kind of zooming in on the fine-grained details of the classical second law. We don’t need to think about huge numbers of particles; we can make statements about what is allowed among just a few of them. When we do this, said Nicole Yunger Halpern, it becomes clear that the classical second law is just a kind of coarse-grained sum of a whole family of inequality relationships. (6)

Barzon, Giacomo, et al. Criticality and Network Structure Drive Emergent Oscillations in a Stochastic Whole-Brain Model. Journal of Physics: Complexity. 3/3, 2022. After some years into the 21st century, and original notices in the 1980s and before, by these 2020s University of Padova systems theorists including Samir Suweis can now reach a deep theoretical and empirical quantification of a critically-poised universality across the ecosmos to cerebral capacities so to provide a dynamic middle-way optimum poise between more or less, closed and open coherence. See Heterogeneity Extends Criticality by Fernanda Sanchez-Puig, et al herein for another 2022 instance.

Overall, here we have shown in detail how network structure plays a fundamental, yet sometimes poorly understood, role. Therefore, we believe that our work will serve as a baseline for future analytical efforts in explaining the nature of the observed transition under more relaxed assumptions, e.g., in the presence of a non-trivial distribution of weights and different topologies, to further understand the influence of both in the emergence of critical features in the human brain. Possible approaches may include the use of heterogeneous mean-field methods as done in the study of epidemic spreading or annealed network approximations. All in all, we believe that our findings are a further contribution to the still puzzling ‘critical brain hypothesis’. (11)

Bezgodov, Aleksandr and Konstantin Barezhev. The Origin of Planetary Ethics in the Philosophy of Russian Cosmism. UK: Xlibris, 2019. The Russian philosopher authors are General Director and Research Director of the Planetary Development Institute, which is based in Dubai. Into March 2022, it is timely that I came upon this erudite volume based on a deep native wisdom of these Eastern Slavic peoples. From the 1890s to the 1950s, this stellar school conceived an organic, numinous, feminine milieu which requires our human/Earth participation. (See George Young 2010 herein for a historic review.) The epochal endeavor was distinguished by contributors such as Nikolai Federov, Konstantin Tsiolkovsky and Vladimir Vernadsky. Two chapters are Nikolai Umov: Anti-Entropy Ethics for Controlled Evolution and Ivan Efremov: Between Inferno and Harmony. An overall unitary, “panbiologic” animation and procreative destiny was traced from dark to light, relative chaos to order, with a quickening consciousness which peoples would spread across the galaxies.

As a later instances, I heard the systems scholar James G. Miller speak at MIT in 1984 when he said there was little USA interest in his work, but was often invited to Russia where thinkers wanted to hear about nested cellular connectivities. for a 2015 notice, the Russian-American cosmologist Andrei Linde (search) spoke about a people purpose to awaken and illume the celestial reaches. And the Biosystems journal edited by Abir Igamberdiev (Memorial University, Canada, search) seek to publish integral syntheses such as Autopoiesis: Foundations of Life, Cognition and Emergence.

But the prime motive of this visionary persuasion from V. Vernadsky, when he collaborated with P. Teilhard in Paris in the 1920s, to this present edition was to perceive our whole Earthsphere bioabide as a vital unitary center of cosmic cocreation. As the lead title advises, only an actual Planetary Ethics will save us. (As a sign of a global, noosphere civilization in place, I received this esoteric work from Amazon in two days.) Into March 2022, at the same while how absurd and tragic is it that an Armageddon-like conflagration rages and threatens to become a nuclear war.

This book seeks to formulate a Planetary Ethics as a moral basis and value code for a biocompatible, harmonious, and manageable civilization. Its essential content is extensively drawn Russian cosmists from the 1890s to the 1950s who made up this unique philosophical, scientific, and cultural phenomenon. By way of their joint planetary-cosmic consciousness, they developed a system of biocentric and humanistic values. Another facet was a spiritual rebellion of life against chaos, death, and limitation. The cosmists focused on a united humanity and a definitive relationship between human beings and a biouniverse still in the making. (Excerpt)

Bowick, Mark, et al. Symmetry, Thermodynamics and Topology in Active Matter. Physical Review X. February, 2022. This is an invited perspective review of a 2020 Kavli Conference with this title by Kavli Institute, UC Santa Barbara, MIT and Indian Institute of Science physicists. Two coauthors are Cristina Marchetti and Sriram Ramaswamy who were the main founders of this scientific notice of how particulate materials (e.g., colloids, bacteria) in both organic and inorganic media tend to self-organize into complex, dynamic forms. As a COVID remote meeting, many more authorities could present their work. Now ten years on, it is strongly evident that a common, robust spontaneity serves to vivify natural phenomena everywhere.

The Active Matter phrase refers to any collection of entities that individually use free energy to generate their own motion and forces. Through interactions, active particles spontaneously organize into emergent large-scale structures. This self-organizing paradigm is now applied to living and nonliving systems from subnuclear structures in the cell to collective motion at the human scale. The diverse phenomena they exhibit all stem from a dynamic assembly of discrete components that dissipatively break time-reversal symmetry. Here we review an array of current and emerging research directions as physical materiality, broadly conceived, comes to life. (Abstract, excerpt)

Today, the name active matter refers to any collection of entities that individually use free energy to generate their own motion and forces. Through interactions, these active particles spontaneously organize in emergent large-scale structures with a rich range of materials properties. The defining property of an active system is that the energy input is out of equilibrium, whether internal or created by contact with a proximate surface, acts individually and independently on each “active particle.” (1, 2)

The field of active matter was born from the physicist’s ambition to use statistical physics and hydrodynamics to describe collective motion in the living world. The active-matter framework has now had important successes in capturing examples of organization in living matter on scales from subnuclear to oceanic. (19)

Butler, Travis and Georgi Georgiev. Self-Organization in Stellar Evolution: Size-Complexity Rule. arXiv:2202.02318. Assumption University, Worcester, MA physicists (search GG) post a strong notice to date of nature’s deep propensity to organize itself into dynamic, invariant states everywhere. In this astral case, how stars form is seen as an another exemplary result. An historic importance then becomes an implied mathematic source code which exists in generative effect independently of any certain scale or instance. In regard, such recurrent features in kind from celestial to cultural phases are cited as a 2022 presence and proof of a true universality. As our Earthuman epic reaches a consummate moment, this entry, A Physics Perspective on Collective Animal Behavior (N. Ouellette 2022), and many others are coming altogether so to reveal and discover a cocreative uniVerse to wumanVerse familial genesis.

Complexity Theory is highly interdisciplinary, therefore any regularities must hold on all levels of organization, independent on the nature of the system. An open question in science is how complex systems self-organize to produce emergent structures and properties by way of non-equilibrium thermodynamics. There is a quantity-quality transition which holds across natural systems, which is often known as the size-complexity rule. We apply this standard to stars to compare them with other complex systems so to find universal patterns of self-organization independent of the substrate. This rule goes under different names in different disciplines and systems of different nature, such as the area-speciation rule, economies of scale, scaling relations in biology and for cities, and many others. (Abstract excerpt)

Canup, Robin and Philip Christensen, Co-Chairs. Origins, Worlds and Life: A Decadal Strategy for Planetary Science and Astrobiology. Washington, DC: National Academy of Sciences, 2022. The online posting is a thorough, graphic, 700+ page volume all about this ambitious 2023 to 2032 USA research project, with many global inputs. A paper edition will appear next year. It even considers “Planetary Defense” against astro objects. An Earthuman basis is conveyed by some 600 White Paper topical proposals across a wise span such as A Solar System Space Telescope, New Planetary Data Ecosystems Centers, and Cryogenic Comet Sample Return. Specific chapters cover Evolution of Protoplanetary Disks, Global Atmospheres, Magnetospheres, Moons, and Climate, on to Exoplanets, Dynamic Habitability and Life Elsewhere, along with program plans, equity concerns and so on. Many sections discuss spaceflight missions in this period and beyond

In regard, “A Table of Twelve Priority Scientific Questions” in accord with subject matter such as What Mechanisms Dispersed the Nebula and What are Giant Planets Made Of often recurs. Many sections come with an extensive reference list. But as one reads along, by any natural (Earthural) philoSophia it ought to be asked why we capable, collaborative Earthlings are embarking on this vast exploratory venture at all. To gain any such sense, a revolutionary ecosmos genesis neds to be appropriated which seems involved with its own self-quantification, decipherment, and recorded description. By these lights an integral self-discovery and recognition could be achieved. And within a Participatory UniVerse model, a decisive act of aware, informed self-selection and affirmation becomes possible.

STATEMENT OF TASK: The Space Studies Board shall establish a survey committee to develop a comprehensive science and mission strategy for planetary science that updates and extends the Board’s current solar system exploration decadal survey, Vision and Voyages for Planetary Science in the Decade 2013-2022. The new decadal survey shall broadly canvas the field of space and ground-based planetary science to determine the current state of knowledge and identify the most important scientific questions to be addressed during the interval. In addition, it will address relevant programmatic and implementation issues of interest to NASA and the National Science Foundation.

Q(uestion) 9.2 What are the Energy Sources that Life can Exploit on Earth and Other Planets?, (4-29); Q 9.1 How Did Early Earth Environments and Prebiotic Pathways Co-Evolve and Give Rise to Life and What Major Milestones in Earth History Were Coincident with Major Transitions in the Abundance, Quality, and/or Complexity of Life? (12-5); Q11.1 What Is the Extent of Molecular Complexity (e.g., Size, Heteroatom Diversity, Structure, Pathway Assembly Index) and Degree of Organization (e.g., Isomeric Preference, Polymerization) that Can Be Generated Abiotically Under Habitable Conditions? (14-4)

Q 11. Life Elsewhere: Expanding the search to include the possibility of life ‘not as we know it’ requires further technical and conceptual maturation, including advances in statistical methods, scaling laws, information theory, and probabilistic approaches. Understanding the relationship between the geochemical environment and the prebiotic pathways that can give rise to life requires cooperation among diverse disciplines that extends beyond the traditional platform to include geochemists, atmospheric chemists, geologists, geophysicists, astronomers, mission scientists and engineers, and astrobiologists, among others. (11-1)

Cavagna, Andrea, et al. Natural Swarms in 3.99 Dimensions. arXiv:2107.04432. Eight physicists from Italy and Argentina including Irene Giardina provide a further quantitative basis for the universal presence of optimum member-group integral behaviors which can be rooted in statistical physics. A definitive explanation can they be derived from Renormalization Group theories about relations between nested active scales. As the authors note, their advance is the first time that such a specific connection has been made.

The dynamical critical exponent z of natural swarms is calculated using the renormalization group. To order \epsilon = 4-d, a novel fixed point emerges, where both off-equilibrium activity and mode-coupling inertial interactions are relevant. In three dimensions the critical exponent at the new fixed point is z=1.3, in fair agreement with experiments. (Abstract)

Collective behaviour is found in a wide variety of biological systems from clusters of bacteria and colonies of cells, up to insects, bird flocks, and vertebrate groups. A unifying ingredient, which can be based in statistical physics, is the presence of strong, consistent correlations. Studies of avian flight, fish schools, mammal herds, swarms, microbes and proteins have found that the correlation length is much larger than the microscopic scales. Another key hallmark of statistical physics is dynamic scaling, which has been verified in many of these occasions. the case of natural swarms of insects. (1)

Within statistical physics, strong correlations and scaling laws are the two stepping stones leading to the Renormalization Group (RG): when we coarse-grain short-wavelength fluctuations, the parameters of different models flow towards one common fixed point ruling their large-scale behaviour. RG fixed points therefore organize the macroscopic behavior of strongly correlated systems into few universality classes. Biology is vastly more complex than physics, but the widespread presence of strong correlations and the validity of scaling laws cannot be considered a coincidence. They rather call for an exploration of the correlation-scaling-RG path also in collective biological systems. (1)

Chanu, Athokpam, et al. Analysis of the Structural Complexity of Crab Nebula Observed at Radio and Infrared Frequencies using a Multifractal Approach. arXiv:2206.04717. We cite this entry by Jawaharlal Nehru University, School of Computational and Integrative Sciences, Indian Institute of Astrophysics, and Tata Institute of Fundamental Research investigators for its self-similar content and as an example of deep human proclivities to carry out such studies wherever possible. A reference list harks back to Per Bak who in 1988 proposed a “physics of fractals” and “self-organized criticality.”

Into these 2020s, a convergent revolutionary discovery of a common, familial ecosmos can be attributed to a collaborative Earthuman sapience. In regard, an aware “planatural philoSophia” view might wonder how these mathematic, anatomy/physiology patternings get there in the first place. Why are we peoples moved and capable to learn all this? At this fraught moment, on this site we seek to support an evident presence of a greater phenomenal genesis with its own encoded course from universe to me + We = US.

The Crab nebula exhibits complex morphological patterns at different observing frequencies. We carry out a systematic investigation using imaging data at radio and infrared frequencies. For our analysis, we use standard multifractal detrended fluctuation analysis (MFDFA). We find long-range, power-law correlations, as expected from the physics of supernova evolution. Consequently, its multifractal properties originate from the probability density function as well as different correlations of large and small fluctuation values. Our analysis thus provides a fresh perspective on the morphology of the Crab nebula from a statistical physics viewpoint. (Abstract excerpt)

Costa, Luciano. On Similarity. arXiv:2111.02803. We cite this 2021 entry by the senior University of Sao Paulo complexity theorist (search) as a way to record his steady flow of wide-ranging, collegial papers since the early 2000s. Another reason is a present burst of studies over a topical span from enzymes to texts and cities. By this work, along with many other worldwide contributions, 21st century nonlinear systems science altogether seems to have reached an integral convergence. Into the 2020s, a consistent natural recurrence of common patterns and processes, forms and flows, has now become quite evident everywhere.

In regard, the revolutionary outlines of an innate, organic evolutionary genesis can be expressed. By some affinity with a each one of us, a genetic-like universal, independent, network code source is found in self-organizing effect across every spatial and temporal domain. Its constant generative influence then serves to inform and exemplify itself in each phenotype-like occasion from galaxies to geckos. A familial, indeed Taoist, image becomes portrayed as an archetypal part/wave = light, DNA/AND = genome, bigender complementarity so as to compose a whole beingness in community.

In regard, we also cite Coincidence Complex Networks by L. da Costa in Journal of Physics: Complexity (3/1, 2022), Enzyme Similarity Networks by Reis, Renan dos Reis and L. da Costa (2205.0516) Text Characterization based on Recurrence Networks by Souza, Barbara, et al. (2201.06665, see review) A Similarity Approach to Cities and Features by L. Da Costa, Luciano and Eric Tokuda at (2202.08301), and City Motifs as Revealed by Similarity between Hierarchical Features by Guilherme Domingues, et al. (2204.09104).

The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Many studies show that critical systems tend to exhibit optimal computational property. Here, we provide an account of the mathematical and physical foundations of criticality. We then review and discuss recent experimental studies so to identify important next steps to be taken, along with connections to other fields. (2111.02803 excerpt)

Many complex systems reveal intricate characteristics taking place at several scales of time and space. In particular, texts are distinguished by a hierarchical structure that can be studied by multi-scale concepts and methods. Effective approaches can emphasize words with more informational content. Here we advance this work with a focus on mesoscopic representations of networks. We extend this domain to textual narratives wherein recurrent relationships among parts of speech (subject, verb and direct object) form connections among sequential pieces (e.g., paragraphs). (2201.06665 excerpt)

Czegel, Daniel, et al. Bayes and Darwin: How Replicator Populations Implement Bayesian Computations. BioEssays. 44/4, 2022. DC and Eors Szmathary, Institute of Evolution, Budapest, Hamza Glaffar, Cold Spring Harbor Laboratory and Joshua Tenenbaum, MIT, continue their project to perceive and identify life’s developmental emergence as mainly a cerebral, cognitive learning advance. It is argued that every organism across all Metazoan domains must be primarily able to be aware of and predict their ever-changing environs. By this view, bodily evolution (Darwin) and proactive mind (Bayes) need proceed in a parallel way. Here, this 2020s version is informed and braced by probalistic, iterative, cognitive models or versions. Writ large, once again an outline of a self-educating, making, affirming, autocatalytic participant reality can become evident as a complementarity of past reference and open future.

Bayesian learning theory and evolutionary theory both formalize adaptive competition dynamics in variable environments. What do they have in common and how do they differ? In this paper, we discuss structural and process analogies at a computational and an algorithmic-mechanical level. We point out mathematical equivalence and isomorphism between Bayesian update and replicator dynamics. We discuss how these mechanisms provide similar ways to adapt to stochastic conditions at multiple timescales. We thus find replicator populations to encode regularities so as to predict future environments. As a notable result, a unified view of the theories of learning and evolution can be achieved. (Abstract)

Czegel, Daniel, et al. Novelty and Imitation within the Brain: A Darwinian Neurodynamic Approach to Combinatorial Problems. Nature Scientific Reports. 11:12513, 2021. DC, Eors Szmathary, Marton Csillag, and Balint Futo, Institute of Evolution, Budapest, along with Hamza Glaffar, Cold Spring Harbor Laboratory post a latest version of their studies of life’s creaturely evolution as most involved with progressively gaining intelligence and knowledge so to best survive. See also Bayes and Darwin: How Replicator Populations Implement Bayesian Computations by this collegial team in BioEssay. (44/4, 2022.)

Efficient search in combinatorial spaces, such as those of possible action sequences, linguistic structures, or causal explanations, is an essential component of intelligence. Based our prior work, we propose that a Darwinian process, operating over sequential cycles of imperfect copying and selection of neural informational patterns, is a promising candidate. In teacher and learner settings, we demonstrate that the emerging Darwinian population of readout activity patterns can maintain and continually improve upon existing solutions A novel analysis method, neural phylogenies, is then proposed that displays the unfolding of the neural-evolutionary process. (Abstract excerpt)

Dambricourt Malasse, Anne, ed. Self-Organization as a New Paradigm in Evolutionary Biology. International: Springer Frontiers, 2022. The editor is a senior paleo-anthropologist at the French National Center for Scientific Research. The volume appears in a new Springer series Evolutionary Biology: New Perspectives (search Richard Delisle) and can represent a latest, strongly evident affirmation of this missing innate, common source force for life’s oriented, emergent development. In regard the work well serves to establish an absent, animating, informative, genome-like basis which can at last inform, explain, qualify and brace a valid 2020s genesis synthesis within a revolutionary ecosmos uniVerse.

We note these chapters to convey the book’s inclusive reach and deep veracity: Self-Organization Meets Evolution: Ernst Haeckel and Abiogenesis (Georgy Levit and Uwe Hossfeld, see review), Self-Organization in Embryonic Development (Stuart Newman, search), Biological Evolution of Microorganisms (Werner Arber) From Dissipative Structures to Biological Evolution: A Thermodynamic Perspective (Dilip Kondepudi, et al, see review), and Quantum Fractal Thermodynamics to Describe the Log-Periodicity Law in Species Evolution and Human Organizations (Diogo Queiros-Conde, et al). Anne Malasse then posts a final wrap as Sapiens and Cognition: The Last Threshold of Self-Organized and Self-Memorizing Increasing Complexity.

A new evolutionary synthesis is proceeding to integrate the scientific models of self-organization in occurrence since the later 20th century as based on the laws of physics, thermodynamics, and mathematics. This book shows how self-organization is by now integrated across a 21st century span from life’s origins to our human phase. The first part attends to the modern observations in paleontology and biology, with prior presciences such as Immanuel Kant, d’Arcy Thompson, Henri Bergson, and Ilya Prigogine. The second part views emergent evolutionary models drawn from the complexity sciences, the non-linear dynamical systems, fractals, attractors, epigenesis, and other system approaches such as embryogenesis-morphogenesis phenomena. (Publisher)

Global warming, anthropocene extinctions along with astrobiology efforts to look for primitive life forms are prompting thinkers to view life’s evolution as the prime reality for species biodiversity and indeed our own civilization. This discernment leads to better understandings of the origin of the organization of dynamic forms and processes from the smallest cellular unit to the most complex interactions within the organism and then between organisms. Such novel insights and vista just coming into view can illume over geological and cosmic time scales how principles of self-organization of complex systems and generic laws of adaptation and complexification are at procreative work. (Anne Malasse, The Origin and Evolution of Living Organisms: A Convergence between Old and New Paradigms.)

1 | 2 | 3 | 4  Next