(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

I. Our Earthuman Edition: A 21st Century, PhiloSophia, eLibrary of eCosmos, PediaPedia Resource

C. 2020 – 2022 Collaborative EarthWise Convergent, Integrative Syntheses

Within the Global Genius: An Emergent Planetary Prodigy Comes to Her/His Own Knowledge Chapter, and in concert with its C. Earth Learns: A Novel Attribution to Intelligent Collaborations as a Global Edification section this new module will be gather and highlight premier contributions. Our intent is to gather, identify a wide array of integral advances that can represent an imminent convergent synthesis.

Bezgodov, Aleksandr and Konstantin Barezhev. The Origin of Planetary Ethics in the Philosophy of Russian Cosmism. UK: Xlibris, 2019. The Russian philosopher authors are General Director and Research Director of the Planetary Development Institute, which is based in Dubai. Into March 2022, it is timely that I came upon this erudite volume based on a deep native wisdom of these Eastern Slavic peoples. From the 1890s to the 1950s, this stellar school conceived an organic, numinous, feminine milieu which requires our human/Earth participation. (See George Young 2010 herein for a historic review.) The epochal endeavor was distinguished by contributors such as Nikolai Federov, Konstantin Tsiolkovsky and Vladimir Vernadsky. Two chapters are Nikolai Umov: Anti-Entropy Ethics for Controlled Evolution and Ivan Efremov: Between Inferno and Harmony. An overall unitary, “panbiologic” animation and procreative destiny was traced from dark to light, relative chaos to order, with a quickening consciousness which peoples would spread across the galaxies.

As a later instances, I heard the systems scholar James G. Miller speak at MIT in 1984 when he said there was little USA interest in his work, but was often invited to Russia where thinkers wanted to hear about nested cellular connectivities. for a 2015 notice, the Russian-American cosmologist Andrei Linde (search) spoke about a people purpose to awaken and illume the celestial reaches. And the Biosystems journal edited by Abir Igamberdiev (Memorial University, Canada, search) seek to publish integral syntheses such as Autopoiesis: Foundations of Life, Cognition and Emergence.

But the prime motive of this visionary persuasion from V. Vernadsky, when he collaborated with P. Teilhard in Paris in the 1920s, to this present edition was to perceive our whole Earthsphere bioabide as a vital unitary center of cosmic cocreation. As the lead title advises, only an actual Planetary Ethics will save us. (As a sign of a global, noosphere civilization in place, I received this esoteric work from Amazon in two days.) Into March 2022, at the same while how absurd and tragic is it that an Armageddon-like conflagration rages and threatens to become a nuclear war.

This book seeks to formulate a Planetary Ethics as a moral basis and value code for a biocompatible, harmonious, and manageable civilization. Its essential content is extensively drawn Russian cosmists from the 1890s to the 1950s who made up this unique philosophical, scientific, and cultural phenomenon. By way of their joint planetary-cosmic consciousness, they developed a system of biocentric and humanistic values. Another facet was a spiritual rebellion of life against chaos, death, and limitation. The cosmists focused on a united humanity and a definitive relationship between human beings and a biouniverse still in the making. (Excerpt)

Bowick, Mark, et al. Symmetry, Thermodynamics and Topology in Active Matter. Physical Review X. February, 2022. This is an invited perspective review of a 2020 Kavli Conference with this title by Kavli Institute, UC Santa Barbara, MIT and Indian Institute of Science physicists. Two coauthors are Cristina Marchetti and Sriram Ramaswamy who were the main founders of this scientific notice of how particulate materials (e.g., colloids, bacteria) in both organic and inorganic media tend to self-organize into complex, dynamic forms. As a COVID remote meeting, many more authorities could present their work. Now ten years on, it is strongly evident that a common, robust spontaneity serves to vivify natural phenomena everywhere.

The Active Matter phrase refers to any collection of entities that individually use free energy to generate their own motion and forces. Through interactions, active particles spontaneously organize into emergent large-scale structures. This self-organizing paradigm is now applied to living and nonliving systems from subnuclear structures in the cell to collective motion at the human scale. The diverse phenomena they exhibit all stem from a dynamic assembly of discrete components that dissipatively break time-reversal symmetry. Here we review an array of current and emerging research directions as physical materiality, broadly conceived, comes to life. (Abstract, excerpt)

Today, the name active matter refers to any collection of entities that individually use free energy to generate their own motion and forces. Through interactions, these active particles spontaneously organize in emergent large-scale structures with a rich range of materials properties. The defining property of an active system is that the energy input is out of equilibrium, whether internal or created by contact with a proximate surface, acts individually and independently on each “active particle.” (1, 2)

The field of active matter was born from the physicist’s ambition to use statistical physics and hydrodynamics to describe collective motion in the living world. The active-matter framework has now had important successes in capturing examples of organization in living matter on scales from subnuclear to oceanic. (19)

Butler, Travis and Georgi Georgiev. Self-Organization in Stellar Evolution: Size-Complexity Rule. arXiv:2202.02318. Assumption University, Worcester, MA physicists (search GG) post a strong notice to date of nature’s deep propensity to organize itself into dynamic, invariant states everywhere. In this astral case, how stars form is seen as an another exemplary result. An historic importance then becomes an implied mathematic source code which exists in generative effect independently of any certain scale or instance. In regard, such recurrent features in kind from celestial to cultural phases are cited as a 2022 presence and proof of a true universality. As our Earthuman epic reaches a consummate moment, this entry, A Physics Perspective on Collective Animal Behavior (N. Ouellette 2022), and many others are coming altogether so to reveal and discover a cocreative uniVerse to wumanVerse familial genesis.

Complexity Theory is highly interdisciplinary, therefore any regularities must hold on all levels of organization, independent on the nature of the system. An open question in science is how complex systems self-organize to produce emergent structures and properties by way of non-equilibrium thermodynamics. There is a quantity-quality transition which holds across natural systems, which is often known as the size-complexity rule. We apply this standard to stars to compare them with other complex systems so to find universal patterns of self-organization independent of the substrate. This rule goes under different names in different disciplines and systems of different nature, such as the area-speciation rule, economies of scale, scaling relations in biology and for cities, and many others. (Abstract excerpt)

Costa, Luciano. On Similarity. arXiv:2111.02803. We cite this 2021 entry by the senior University of Sao Paulo complexity theorist (search) as a way to record his steady flow of wide-ranging, collegial papers since the early 2000s. Another reason is a present burst of studies over a topical span from enzymes to texts and cities. By this work, along with many other worldwide contributions, 21st century nonlinear systems science altogether seems to have reached an integral convergence. Into the 2020s, a consistent natural recurrence of common patterns and processes, forms and flows, has now become quite evident everywhere.

In regard, the revolutionary outlines of an innate, organic evolutionary genesis can be expressed. By some affinity with a each one of us, a genetic-like universal, independent, network code source is found in self-organizing effect across every spatial and temporal domain. Its constant generative influence then serves to inform and exemplify itself in each phenotype-like occasion from galaxies to geckos. A familial, indeed Taoist, image becomes portrayed as an archetypal part/wave = light, DNA/AND = genome, bigender complementarity so as to compose a whole beingness in community.

In regard, we also cite Coincidence Complex Networks by L. da Costa in Journal of Physics: Complexity (3/1, 2022), Enzyme Similarity Networks by Reis, Renan dos Reis and L. da Costa (2205.0516) Text Characterization based on Recurrence Networks by Souza, Barbara, et al. (2201.06665, see review) A Similarity Approach to Cities and Features by L. Da Costa, Luciano and Eric Tokuda at (2202.08301), and City Motifs as Revealed by Similarity between Hierarchical Features by Guilherme Domingues, et al. (2204.09104).

The neural criticality hypothesis states that the brain may be poised in a critical state at a boundary between different types of dynamics. Many studies show that critical systems tend to exhibit optimal computational property. Here, we provide an account of the mathematical and physical foundations of criticality. We then review and discuss recent experimental studies so to identify important next steps to be taken, along with connections to other fields. (2111.02803 excerpt)

Many complex systems reveal intricate characteristics taking place at several scales of time and space. In particular, texts are distinguished by a hierarchical structure that can be studied by multi-scale concepts and methods. Effective approaches can emphasize words with more informational content. Here we advance this work with a focus on mesoscopic representations of networks. We extend this domain to textual narratives wherein recurrent relationships among parts of speech (subject, verb and direct object) form connections among sequential pieces (e.g., paragraphs). (2201.06665 excerpt)

Czegel, Daniel, et al. Bayes and Darwin: How Replicator Populations Implement Bayesian Computations. BioEssays. 44/4, 2022. DC and Eors Szmathary, Institute of Evolution, Budapest, Hamza Glaffar, Cold Spring Harbor Laboratory and Joshua Tenenbaum, MIT, continue their project to perceive and identify life’s developmental emergence as mainly a cerebral, cognitive learning advance. It is argued that every organism across all Metazoan domains must be primarily able to be aware of and predict their ever-changing environs. By this view, bodily evolution (Darwin) and proactive mind (Bayes) need proceed in a parallel way. Here, this 2020s version is informed and braced by probalistic, iterative, cognitive models or versions. Writ large, once again an outline of a self-educating, making, affirming, autocatalytic participant reality can become evident as a complementarity of past reference and open future.

Bayesian learning theory and evolutionary theory both formalize adaptive competition dynamics in variable environments. What do they have in common and how do they differ? In this paper, we discuss structural and process analogies at a computational and an algorithmic-mechanical level. We point out mathematical equivalence and isomorphism between Bayesian update and replicator dynamics. We discuss how these mechanisms provide similar ways to adapt to stochastic conditions at multiple timescales. We thus find replicator populations to encode regularities so as to predict future environments. As a notable result, a unified view of the theories of learning and evolution can be achieved. (Abstract)

Czegel, Daniel, et al. Novelty and Imitation within the Brain: A Darwinian Neurodynamic Approach to Combinatorial Problems. Nature Scientific Reports. 11:12513, 2021. DC, Eors Szmathary, Marton Csillag, and Balint Futo, Institute of Evolution, Budapest, along with Hamza Glaffar, Cold Spring Harbor Laboratory post a latest version of their studies of life’s creaturely evolution as most involved with progressively gaining intelligence and knowledge so to best survive. See also Bayes and Darwin: How Replicator Populations Implement Bayesian Computations by this collegial team in BioEssay. (44/4, 2022.)

Efficient search in combinatorial spaces, such as those of possible action sequences, linguistic structures, or causal explanations, is an essential component of intelligence. Based our prior work, we propose that a Darwinian process, operating over sequential cycles of imperfect copying and selection of neural informational patterns, is a promising candidate. In teacher and learner settings, we demonstrate that the emerging Darwinian population of readout activity patterns can maintain and continually improve upon existing solutions A novel analysis method, neural phylogenies, is then proposed that displays the unfolding of the neural-evolutionary process. (Abstract excerpt)

Frank, Adam, et al. Intelligence as a Planetary Scale Process. International Journal of Astrobiology. February, 2022. Veteran astroscholars AF, University of Rochester, David Grinspoon, Planetary Science Institute and Sara Walker, Arizona State University provide a latest admission, description and affirmation of the actual evolutionary emergence a worldwise cerebral faculty. As the quotes engage, a mindfulness to allow something going on by own agencies, such an appearance and fulfillment now becomes readily evident.

Intelligence is usually seen as an individual faculty. Here, we broaden the idea of intelligence as a collective group property and extend it to the planetary scale. We consider the ways in which a relative technological intelligence may represent a kind of planetary scale transition, much as the origin of life itself may be seen as a global phenomenon. Our approach follows many researchers today that the correct scale to understand key aspects of life and its evolution is planetary, beyond traditional focus on individual species. (Abstract excerpt)

A transition to planetary intelligence, as we described here, would achieve its operative presence at a global scale. Such a mindful world could steer the future evolution of Earth, acting in concert with and guided by a deep understanding of natural systems. If other civilizations that may exist in the universe undergo such a transition, we would expect to see a marked difference in their biosignatures due to a sustainable, global intelligence versus those that not been able to attain this emergent phase. (27)

We propose five properties required for a world to show knowing cognitive activity operating across planetary scales. These are: (1) emergence ,(2) dynamics of networks, (3) networks of semantic information, (4) appearance of complex adaptive systems, (5) autopioesis. Different degrees of these properties appear as a world evolves from abiotic (geosphere) to biotic (biosphere) to technologic (technosphere). (33)

Furtak, Marcin, et al. The Forest, the Trees, or Both? Hierarchy and Interactions between Gist and Object Processing during Perception of Real-world Scenes. Cognition. Vol. 221, April, 2022. Into this year, Polish Academy of Sciences and Tel Aviv University neuropsychologists can draw upon their own research along with a review of past 21st century work to an extent that they can presently reach a strong conclusion. Taken together, these studies join our results in supporting the global to local accounts, suggesting that gist (field) is processed more readily, and earlier, than objects. (5) As reported across the website, a temporal sequence appears to go on for both evolution and an entity. A sighted occasion is viewed by way of these dual archetypal modes, whereby a contextual scene is perceived first, after which item details are noticed and situated.

The global-to-local theories of perception assume that the gist of a scene is computed early and automatically, whereas recognition of objects occurs at a later stage, requires attentional resources, and is primed by the representation of whole. To test these views, we investigated the sequence of gist- and object-recognition. We generally found that backgrounds were classified more accurately than foreground objects, while wider fields influenced object recognition. Thus these findings support global-to-local theories, implying that gists are more readily seen than details, and at an earlier stage. (Abstract excerpt)

Gagler, David, et al. Scaling Laws in Enzyme Function Reveal a New Kind of Biochemical Universalit. PNAS. 119/9, 2022. Arizona State University bioscientists including Sara Walker, Chris Kempes and Hyunju Kim enter a good example of novel Earthuman abilities which can now find life’s deeper phases to also be distinguished by common, recurrent, self-similar patterns as everywhere else. A further implication is that such a result can be traced to and rooted in physical phenomena. A section heading is Universal Scaling Laws Define the Behavior of Enzyme Classes Across Diverse Biochemical Systems. A graphic depicts how the same forms hold from Archaea and Bacteria to Eukaryotes and Metagenomes, independently of specific components. We wonder again at our emergent EarthWise faculty whom can just now come to these discoveries.

All life on Earth uses a shared set of chemical compounds and reactions which provides a detailed model for universal biochemistry. Here, we introduce a more generalizable concept that is more akin to the kind of universality found in physics. We show how enzyme functions form universality classes with common scaling behavior. Together, our results establish the existence of a new kind of biochemical universality, independent of the details of life on Earth’s component chemistry. (Abstract excerpt)

In physics, the notion of coarse-graining is critical to identifying universality classes, because it allows ignoring most details of individual systems in favor of uncovering systematic behavior across different systems. (3)

Gosak,, Marko, et al. Networks Behind the Morphology and Structural Design of Living Systems. Physics of Life Reviews. March, 2022. As a good example of timely abilities to achieve a convergent synthesis of nonlinear, animate complexities, five University of Maribor, Slovenia theorists including Matjaz Perc post a 40 page, 250 reference article with regard to life’s ubiquitous connectivities across every anatomic and physiological instance. For example intercellular and multicellular interaction patterns, fluid flows, neural nets and all else can be seen to exhibit similar topological dynamics. Today collaborative teams in every land, on a daily basis, altogether compose a speciesphere scientific endeavor going on by itself. But with insane carnage not far away, such a learning, thinking Earthuman faculty whom is achieving these revolutionary findings is still unknown. For such reasons, the evident presence of an independent, universal mathematic source in manifest effect still cannot be implied. See also Dynamics of Higher Order Networks by this collegial team including Matjaz Perc at arXiv:2203.06601 for a similar exercise.

Advances in imaging techniques and biometric data methods have enabled us to apply the topological network properties to organelles, organs, and tissues, as well as the coordinations among them that yield a healthy, whole organism. We review research dedicated to these advances with a focus on networks between cells, the topology of multicellular structures, neural interactions, fluid transportation, and anatomies. The percolation of blood vessels, brain geometries, bone porosity, and relations between various parts of the human body are some examples we explore in detail. (Abstract excerpt)

Tools from the armamentarium of the complex network theory are nowadays recognized as a general and powerful theoretical framework for assessing real-world systems. Their wide applicability is to a significant extent a consequence of their natural suitability to represent and study the relations between individual components in virtually any discrete system. For these reasons, we are witnessing in the last two decades an explosion of multidisciplinary studies in which the complex network methods are applied to social sciences [223-229], linguistics [230-232], ecological systems [233-235], economics [236, 237], and a wide range of engineered and technological systems. (23)

Grossberg, Stephen. Conscious Mind, Resonant Brain: How Each Brain Makes a Mind. New York: Oxford University Press,, 2022. The octogenarian Boston University poly-neuroscientist was often asked to write a summary work about his luminous studies (search). As a result, this large format, illustrated, 700 page volume proceeds to substantiate and explain his Complementary Computation theory of dynamic cerebral processes and cognitive features. As the quotes describe, into the 21st century and 2020s a vital finding can now be established. Our human neural facility, awareness and responsive behavior is distinguished by a double basis of opposite but reciprocal functions and qualities. One version is the What/Where model of object view and spatial place, which draws on dual cortical streams. Another instance, of course, is our hemispheric halves with their archetypal contrast of dot/connect, node/link, the litany goes all the way to male and female compete/cooperate aspects.

Malleable network topologies, as they serve to inform and communicate are noted to play a significant role. In further regard, as noted in an Introduction (7), Chapter 17 traces our emergent, personal brain/mind epitome deep down to the original complex dynamics of a physical source stage. Sections such as A Universal Developmental Code, Complementarity Biological and Physical Laws, A Universal Measurement Device of and in the World express how active neural cognizance can be found to self-organize in similar accord with physical principles and phenomena. Along with April entries like The Bifocal Stance Theory of Cultural Evolution (Jagiello) and Novelty and Imitation within the Brain (Czegel), such quantified proof of a true bicameral uniVerse could provide an urgent resolve as the two poles lock into mutual war.

The work embodies a revolutionary Principia of Mind that clarifies how autonomous adaptive intelligence is achieved. Because brains embody a universal developmental code, further insights emerge about shared law in living cells from primitive to complex and onto how networks of interacting cells support developmental and learning processes in all species. These novel brain design principles of complementarity, uncertainty, and resonance are then traced to the physical world with which our brains ceaselessly interact, and which enable our brains to incrementally learn to understand those laws, thereby enabling humans to understand the world scientifically. (Publisher)

A question concerns how the complementarity organization of our brains may be related to the complementary properties of the physical world. Here I will note that this occurrence was first proposed in the 1920s by the physicist Niels Bohr from quantum mechanics. The phenomena involves different aspects such as position and momentum for waves and particles. If the brain is a kind of universal measurement system of physical environs such as light, heat and pressure. This fact raises the question of whether brains may have assimilated basic physical principles throughout evolution. (7)

What and Where Cortical Processing Streams These two types of learning, perceptual/cognitive vs. spatial motor, to on in different brain systems. The ventral>/i> stream processes information that enables us to recognize objects. It is thus called the What version. Thedorsal phase provides information about where objects are in space and how to act upon them. It is accordingly called the Where and How mode. (28) I will suggest in Figure 1.19 how they obey “computationally complementary” laws. Complementarity implies the need to balance the capabilities of each version against those of the other. (aka herein as a Golden Mean). (28)

Complementary Processing Streams for Perception/cognition and Space/action. I have called this paradigm Complementary Computing because it describes how the brain is organized into complementary parallel processing streams whose interactions generate biologically intelligent behaviors. A singly cortical stream can compute some properties well, but cannot, by itself, process orther computationally complementary properties. Pairs of cortical streams interact, using multiple stages, to generat emergent features that overcome their complementary deficiencies to compute complete information with which to represent or control some intelligent faculty. (29)

Universal Design for Self=Organizing Measurements and Prediction Systems. Implicit in these conclusions is the fact that principles, mechanisms and architectures in this book are about fundament problems of measurement and how a self-organizing system and represent and predict outcomes in a changing world. Mind and brain are explained by these theories because they are natural computational embodiments of these occasions. (34)

Holford, Mande and Benjamin Normark. Integrating the Life Sciences to Jumpstart the Next Decade of Discover. Integrative & Comparative Biology. 61/6, 2021. Hunter College and UM Amherst biologists introduce this special edition of 29 papers which relate to the new National Science Foundation Big Ideas initiative: Understanding the Rules of Life. As we note, this 2020s span (along with its trauma and tragedy) seems to be a singular moment when many scientific fields from quantum and evolutionary to societal and cosmic have reached an epic phase of convergent synthesis. A strong, steady theme can then be seen to course through these entries. Living systems, in both their Earthly development and organismic function, are found to be distinguished by nested networks which join all their cellular, modular, communal scalar domains. With this overall frame in place, researchers can now go on to discern a common pattern and process which recurs in kind at every spatial and temporal instance.

Other typical entries are The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems; Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems; From Flatland to Jupiter: Searching for Rules of Interaction Across Biological Scales; Complex Temporal Biology: Towards a Unified Multi-Scale Approach to Predict the Flow of Information; and Deep Learning for Reintegrating Biology. In regard, a Grand Challenge is scoped out that does allude to a vivifying self-similar lawfulness which exists on its independent own. But such an imperative revolutionary admission by our EarthWise scientists remains in abeyance. (As a note, a working “Discovery Decade” title had been in place for our Chap. IX 2022 Summary Edition before I came across this project.)

NSF’S Big Ideas: Understanding the Rules of Life Life on our planet is arranged in levels of organization ranging from the molecular scale through to the biosphere. There exists a remarkable amount of complexity in the interactions within and between these levels of organization and across scales of time and space. The NSF Rules of Life Big Idea seeks to enable discoveries to better understand such interactions and identify causal, predictive relationships across these scales.

1 | 2  Next