
III. An Organic, Conducive, Habitable MultiUniVerse2. Quantum Organics in the 21st Century
As science shifts to a worldwide humankind learning on her/his own all about an oriented development from universe to us, new phases of integral clarity are lately achieved. This fundament of subatomic substance was dubbed “quantum,” from the Latin for “amount,” by Max Planck’s realization, circa 1900, that energy waves are composed of discrete material units. For over a century, deep thinkers have tried to study and comprehend via a stellar cast of Einstein, Bohr, Schrodinger, Heisenberg, Bohm, Wheeler and many more. Quantum “mechanics” went forth somewhat as a “methinks it is like” series of ideas and experiments such as entanglement, decoherence, doubleslit tests, dead or alive cats, uncertainty, nonlocality and so on. For example, I heard Abner Shimony speak in 1979 about superposition, and John Bell in 1990 say what does it mean that some quantum phase exists, from which we arise from and wonder. EmQM13 Emergent Quantum Mechanics. www.emqm13.org. A website for the “2nd International Symposium about Quantum Mechanics based on a Deeper Level Theory” held at the Austrian Academy of Sciences, Vienna, in October 2013. Its distinction is that the keynoters, Stephen Adler (IAS Princeton), Gerard ‘t Hooft (Utrecht, Nobel laureate), Masanao Ozawa (Nagoya), and Aephraim Steinberg (Toronto), and 40 presenters, are senior theoretical physicists. While reality seems to disappear into colliders, a multiverse, and nothingness, a worldwide revolution is also going forth. The Proceedings are published in the Journal of Physics: Conference Series as Volume 504. As one may view on that site the annual listings, some 60 meetings for 2013, might we imagine a global science project learning on its own? Surely there must be some grand, significant reason and discovery by this intended human phenomenon of a selfobserving and creating genesis universe. The symposium invites the open exploration of an emergent quantum mechanics, a possible »deeper level theory« that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, »superclassical« physics? The symposium provides a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards an emergent quantum mechanics. Contributions are invited that present current advances in both standard as well as unconventional approaches to quantum mechanics. Quantum Complexity Science Initiative. Quamplexity.org. The site for Jacob Biamonte’s innovative group which seeks, as the quotes say, to join quantum systems with nonlinear networks, which each and all spring from an informative physical realm. See also Quantum Machine Learning by Biamonte, et al, above. We are a vibrant and focused research group happily based in the Department of Physics at the University of Malta. We study the fundamental implications physics has on information and computation, typically viewed through the lens of quantum theory. Quantum theory has provided uninterrupted insights both in the fundamental laws governing our world and in the novel mathematics developed in its description. Quantum Interaction. www.quantuminteraction.org/conferences/qi2016. As the quote describes, an eclectic meeting to imagine a humantum (just coined) merger of these separate micro subatomic, macro classical, and regnant sapiens phases. Typical papers are Quantum Cognition beyond Hilbert Space, and Categorical Compositional Cognition (arXiv:1608.03785). Proceedings are now published with this title as Springer Lecture Notes in Computer Science 10106. The 10th international conference on Quantum Interaction (QI 2016) was held at the Downtown Campus of San Francisco State University (SFSU), 835 Market Street, San Francisco, California, from July 20—22, 2016. Over the years, the Quantum Interaction conferences have provided a debating ground for applications of formal concepts of quantum theory to a variety of areas outside of the natural remit of physics. Quantum Interaction has developed into an emerging interdisciplinary area of science combining research topics in mathematics, physics, psychology, economics, cognitive and computer science. These include: decision making in a variety of social science fields, studies of nonseparable concept combinations in natural language, information retrieval and semantic networks in computer science, proposals to test temporal nonlocality in perception and cognition, and the study of noncommutative structures in learning behavior. Quantum ManyBody Systems Far from Equilibrium. www.physics.sun.ac.za/~kastner/qmb18/index. This is a March 2018 conference at the National Institute for Theoretical Physics in Stellenbosch, South Africa about quench dynamics, thermalization and manybody localization. We also note as an example of how quantum phenomena are now being perceived and treated in similar ways to classical condensed matter. Recent progress in manipulating cold atoms and ions has brought the study of nonequilibrium behavior of isolated quantum systems into the focus of research. This has given rise to the development of novel theoretical concepts and numerical tools, but also led to a renewed interest in foundational questions. Important recent developments, like quench protocols, thermalisation in isolated quantum systems, as well as absence of thermalisation due to manybody localisation, will be in the focus of this workshop. We aim to bring together researchers from a variety of fields related to this topic, including quantum information, statistical physics, mathematical physics, cold atoms and condensed matter physics.
‘t Hooft, Gerard.
The Cellular Automaton Interpretation of Quantum Mechanics.
arXiv:1405.1548.
Along with a prior paper The Fate of the Quantum (arXiv:1308.1007), the Utrecht University, 1999 Nobel laureate physicist continues his project to move beyond a state of entangled theories by this approach that admits a generative program. Albeit with technical density, by this theoretical advance, one may press on to significant resolutions. As noted in Quantum Complex Systems, in these 2010s (much as if humankind’s own version) via better terms and clearer insights, the quantumclassical discord can be removed. Thus “quantum mysteries can be known as classical systems in disguise,” which is quite a claim. As the quotes express, ‘t Hooft avers that an extant reality does and must in fact exist, which proceeds by an interplay of “invariable laws” and their overt stochastic result. When investigating theories at the tiniest conceivable scales in nature, "quantum logic" is taking over from "classical logic" in the minds of almost all researchers today. Dissatisfied, the author investigated how one can look at things differently. This report is an overview of older material, but also contains many new observations and calculations. Quantum mechanics is looked upon as a tool, not as a theory. Examples are displayed of models that are classical in essence, but can be analysed by the use of quantum techniques, and we argue that even the Standard Model, together with gravitational interactions, may be viewed as a quantum mechanical approach to analyse a system that could be classical at its core. We then explain how these apparently heretic thoughts can be reconciled with Bell's theorem and the usual objections voiced against the notion of 'super determinism'. (Abstract) Aczel, Amir. Entanglement. New York: Four Walls Eight Windows, 2002. In quantum physics "entanglement" occurs when two subatomic particles are somehow connected or "entangled" with one another, so that when something happens to one particle, the same thing simultaneously happens to the other particle, even if it's a great distance away. Adesso, Gerardo, et al. Foundations of Quantum Mechanics and their Impact of Contemporary Society. Philosophical of the Royal Society A. Vol.376/Iss.2123, 2018. An introduction to proceedings of a Scientific Discussion Meeting held December 2017 at the Royal Society London. An array of papers include From Quantum Foundations to Applications by Nicolas Gisin and Florian Frowis, Quantum Theory of the Classical by Wojciech Zurek, and Causality Reestablished by Giacomo D’Ariano. Speakers such Bill Unruh, Joan Vaccaro, Carlo Rovelli, Sandu Popescu, and Stephanie Wehner further survey and press these frontiers. Revolutionary quantum phenomena like superposition, waveparticle duality, uncertainty principle, entanglement and nonlocality are today wellestablished, albeit continuing debates remain about the profound understanding of their manifestation. Further, these concepts have been enabling a quantum technological revolution. This meeting aims at gathering the most relevant recent advances on the foundations of quantum mechanics, highlighting their multidisciplinary impact on contemporary society. (Meeting Abstract) Adler, Stephen. Quantum Theory as an Emergent Phenomenon. Cambridge, UK: Cambridge University Press, 2004. Difficulties and qualms persist in this field to the extent that a basic rethinking is in order. In this regard, Adler, a physicist at the Institute for Advanced Studies in Princeton, looks generally to the statistical mechanics of matrix models, among other theoretical aspects, to propose a “deeper level of dynamics” which display scale invariant and holographic properties. Aerts, Diederik and Sandro Sozzo. What is Quantum? Unifying Its MicroPhysical and Structural Appearance. arXiv:1405.7572. We cite this posting by Vrije Universiteit Brussel, Center Leo Apostel for Interdisciplinary Studies, theorists as an example of the 2010s worldwide expansion of this primal realm. Two aspects may be noted – a reinterpretation of micro quantum phenomena away from arcane terms and strangeness to admit complex systems, and their effect in macro, classical scales from proteins and cells to psychology and economies. Consider also these arXiv papers: Quantum Structure in Economics (1301.0751) and Quantum Structure in Cognition (1104.1322) by the authors, Quantum Structure in Competing Lizard Communities by Aerts, et al (search, 1212.0109), and On the Foundations of the Theory of Evolution (search Aerts, 1212.0107). Continue on with Liane Gabora, Jerome Busemeyer, others as you find them. In our 2014 midst, the daunting quantum divide is being breached to achieve a true natural wholeness of universe and human. We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'microphysical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structuralmodeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'. (Abstract) Aguirre, Anthony, et al, eds. Questioning the Foundations of Physics. Berlin: Springer, 2015. A collection of awardwinning essays in the Foundational Questions Institute 2012 contest with this title. Max Tegmark is its director. The first prize went to Robert Spekkens (Perimeter Institute) for The Paradigm of Kinematics and Dynamics Must Yield to Causal Structure, and second prizes to George Ellis for Recognizing TopDown Causation and Patterns in the Fabric of Nature by Steven Weinstein. Julian Barbour, Giacomo D’Ariano, and Giomanni AmelinoCamelia are among the other authors. The content ranges from older physical concepts, which need review, to notices of an informational essence. The closing chapter Is Life Fundamental? by Sara Imari Walker goes on to join this vital quality with J. A. Wheeler’s theories. As a follow up, see It From Bit or Bit From It?: On Physics and Information, a collection of 2013 essay winners (search Aguirre). Aharonov, Yakir, et al. Completely Topdown Hierarchical Structure in Quantum Mechanics. Proceedings of the National Academy of Sciences. 115/11730, 2018. In a paper reviewed by Paul Davies and Leonard Susskind, with a commentary note Topdown Causation and Quantum Physics by George Ellis, physicists YA and Jeff Tollaksen, Chapman University, CA and Eliahu Cohen, University of Ottawa are seen to achieve a strongest proof to date of the presence of later retroinfluences upon natural phenomena. Earlier referenced versions are Topdown Causation: An Integrating Theme within and across the Sciences? by G. Ellis, et al in Interface Focus (2/1, 2012) and Quantifying Causal Emergence Shows that Macro can Beat Micro by Erik Hoel, et al in PNAS (11019790, 2013). In some real way this universe to humankind emergence does stratify, shift and pass on to an increasing degree of aware selfcreation. Can a large system be fully characterized using its subsystems via inductive reasoning? Is it possible to completely reduce the behavior of a complex system to the behavior of its simplest “atoms”? In this paper we answer these questions in the negative for a specific class of systems and measurements. After a general introduction of the topic, we present the main idea with a simple twoparticle example, which leads to surprising effects within atomic and electromagnetic systems. We conclude that under certain boundary conditions, higherorder correlations within quantum mechanical systems can determine lowerorder ones, but not vice versa. This supports a top–down structure in manybody quantum mechanics. (Abstract excerpt) Asano, Masanari, et al. Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, 2015. At the frontiers of this vital unification of life and cosmos, an international team from Japan and Sweden including Andrei Khrennikov shows how current revisions of nature’s basic substance in terms of information processing can neatly meld with an organic systems science. A companion paper, Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology, by this group is posted at arXiv:1503.02515. The aim of this book is to introduce a theoretical/conceptual principle (based on quantum information theory and nonKolmogorov probability theory) to understand information processing phenomena in biology as a whole—the information biology — a new research field, which is based on the application of open quantum systems (and, more generally, adaptive dynamics) outside of physics as a powerful tool. Thus this book is about information processing performed by biosystems. Since quantum information theory generalizes classical information theory and presents the most general mathematical formalism for the representation of information flows, we use this formalism. In short, this book is about quantum bioinformation. (Synopsis) However, it is not about quantum physical processes in biosystems. We apply the mathematical formalism of quantum information as an operational formalism to biosystems at all scales: from genomes, cells, and proteins to cognitive and even social systems. (xi)


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 