(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VII. Our Earthuman Ascent: A Major Evolutionary Transition in Twindividuality

1. Systems Physiology and Psychology: Somatic and Behavioral Development

Witherington, David. The Dynamic Systems Approach as Metatheory for Development Psychology. Human Development. 50/2-3, 2007. After some two decades of exploratory discourse this field appears to have reached a point of convergent synthesis. A University of New Mexico psychologist here carefully blends in this context the options of a ‘contextualist’ camp into local detail, and an ‘organismic’ school in search of holistic integration. These archetypes can lately be subsumed within the encompassing phenomenon of nonlinear self-organization. Viable individuation is thus accomplished by a ‘circular causality’ downward and upward amongst personality nested stages. An affirmative peer review follows by Willis Overton, who has worked toward this goal for many years. A wider import of such an advance is another confirmation within a cosmic to humankind genesis of this universal complementary marriage.

As the core idea for the DSP’s (Dynamic Systems Perspective) metatheoretical framework, self-organization provides a model for understanding developmental change rooted in both universals and particulars, in change that is both orderly and irreversible, and variable and reversible. Two general foci mark the conceptual orientation that self-organization provides: (1) a focus on emergence rather than design as the basis for system development, and (2) a focus on the relations among components of a system, rather than the components themselves, as the source of development. (135-136) The DSP offers a ‘grand narrative’ framework for developmental psychology that promises to unite the field through its focus on both stable pattern and local variability, on developmental global order and on the particulars of real-time task-specific contexts. (147)

Wu, Yihan, et al. Characterizing normal perinatal development of the human brain structural connectivity. arXiv:2308.11836. We enter this work by Boston Children's Hospital and Harvard Medical School computational neuroscientists as an example 0f life's long knowledge accumulation which can finally into the 21st century be in retrospect fed back to the beings it arose from to heal,salve and mitigate. Thus a overall self-healing, medicating, palliative course becomes evident, such as occurred with viral pandemics, as a salient evolutionary feature.

Early brain development is characterized by the formation of a highly organized structural connectome. The interconnected nature of this connectome underlies the brain's cognitive abilities and influences its response to diseases and environmental factors. Hence, quantitative assessment of structural connectivity in the perinatal stage is useful for studying normal and abnormal neurodevelopment. In this study, we developed a computational framework, based on spatio-temporal averaging, for determining such baselines. We observed increases in global and local efficiency, a decrease in characteristic path length, and widespread strengthening of the connections within and across brain lobes and hemispheres. The new computational method and results are useful for assessing normal and abnormal development of the structural connectome early in life.

Zanchi, Paola, et al. Differences in spatiotemporal brain network dynamics of Montessori and traditionally schooled students.. npj Science of Learning. Vol. 9/Art. 45, 2024. Nine neuropsychologists at Lausanne University Hospital and University of Lausanne, Switzerland contrasted the cerebral and cognitive effects of standard schooling with proactive Montessori methods by sophisticated imaging studies and found notable, advantageous differences.

• School experience affects academic and social-emotional outcomes, yet whether differences in pedagogical experience modulate underlying brain network development is still unknown. In this study, we compared the brain network dynamics of students with different pedagogical backgrounds. Specifically, we characterized brain activity at rest by combining both resting-state fMRI and diffusion-weighted structural imaging data of 87 4–18 years old students experiencing either the Montessori pedagogy (student-led, trial-and-error) or the traditional pedagogy (teacher-led, test-based). Montessori students showed higher functional integration and neural stability compared to traditional students. (Abstract)

Zheng, Minzhang, et al. Multiscale Dynamical Network Mechanism Underlying Aging from Birth to Death. arXiv:1706.00667. Neil Johnson’s University of Miami systems physics team apply their unique nonlinear studies to our own personal, lifelong well being or lack thereof. As this section records, an increasing parallel is noticed between ones health and the degree to which our vital rhythms remain in a critically complex state. As a person ages, these synchronies lose their tone with resultant maladies.

How self-organized networks develop, mature and degenerate is a key question for sociotechnical, cyberphysical and biological systems with potential applications from tackling violent extremism through to neurological diseases. So far, it has proved impossible to measure the continuous-time evolution of any in vivo organism network from birth to death. Here we provide such a study which crosses all organizational and temporal scales, from individual components (10^1) through to the mesoscopic (10^3) and entire system scale (10^6). These continuous-time data reveal a lifespan driven by punctuated, real-time co-evolution of the structural and functional networks. Aging sees these structural and functional networks gradually diverge in terms of their small-worldness and eventually their connectivity. In addition to their direct relevance to online extremism, our findings offer fresh insight into aging in any network system of comparable complexity for which extensive in vivo data is not yet available. (Abstract excerpts)

Zhu, Meng and Magdalena Zernicka-Goetz. Principles of Self-Organization of the Mammalian Embryo. Cell. 183/6, 2020. Cambridge University developmental physiologists report their latest findings which could be seen as well indicative of a 21st century scientific revolution to view life’s morphogenesis as due to this dynamic, Turing-like mathematical generation. See also from M Z-G’s lab Self-organization of Stem Cells into Embryos by Marta Shahbazi, et al in Science (364/948, 2019, herein), and The Dance of Life: The New Science of How a Single Cell becomes a Human Being. by and M. Zernicka-Goetz and Roger Highfield. (Basic Books, 2020).


Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10