|
VI. Life’s Cerebral Cognizance Becomes More Complex, Smarter, Informed, Proactive, Self-AwareB. A Neural Encephalization from Minimal Stirrings to an Earthuman Cognizance Striedter, Georg. Principles of Brain Evolution. Sunderland, MA: Sinauer, 2005. A University of California at Irvine neuroscientist gathers and explains many advances of the last two decades about how brains evolved from invertebrates to humans. An example is to compare two previously optional paths by which brains grow in size – “concerted” whereby distinct modules evolve in concert and size with each other, and “mosaic” whence regions enlarge (or shrink) independently. Upon observation, both modes are variously in effect, depending on the species and its environment. Another aspect is a steady scaling of brain size with body weight through evolution for fish, reptiles, birds, mammals and primates, suggestive of a generally emergent trend. Human brains are special because our late arriving, relatively large neocortex allows us to reconstruct and reflect upon these phenomena. Striedter, George, et al. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species. Journal of Comparative Neuroscience. 522/1453, 2014. A 27 person team of senior neuroscientists including Barbara Finlay, Hans Hofmann, Erich Jarvis, and Todd Preuss, outline a National Science Foundation program to study the common cerebral anatomy and intellect that is being found to distinguish every creature and kingdom. By our collaborative retrospect, life’s evolutionary development of body and brain is ever again becoming apparent as an embryonic gestation. A 27 person team of senior neuroscientists including Barbara Finlay, Hans Hofmann, Erich Jarvis, and Todd Preuss, outline a National Science Foundation program to study the common cerebral anatomy and intellect that is being found to distinguish every creature and kingdom. By our collaborative retrospect, life’s evolutionary development of body and brain is ever again becoming apparent as an embryonic gestation. Sumner-Rooney, Lauren and Julia Sigwart. Do Chitons have a Brain? New Evidence for Diversity and Complexity in the Polyplacophoran Central Nervous Systems. Journal of Morphology. 279/7, 2018. Oxford University and Queen’s University, Belfast neuroanatomists well quantify that these early invertebrates do indeed have a rudimentary semblance of a brain-like faculty. Thus life’s evolution can be seen to cerebrally and cognitively stir, sense and quicken from its original rudiments. Three‐dimensional reconstructions from historic histological slides reveal unappreciated complexity in chiton nervous systems. The concentration and organisation of nervous tissue in the oesophageal nerve ring in eight species unambiguously qualify it as a true brain. (Editor) Thiebaut de Schotten, Michel and Karl Zilles, eds. The Evolution of the Mind and Brain. Cortex. 118/1, 2019. An introduction to this special issue with some 20 entries such as The Biological Bases of Color Categorization from Goldfish to the Human Brain, The Left Cradling Bias, Large Scale Comparative Neuroimaging, and The Hippocampus of Birds in a View of Evolutionary Connectomics. Tosches, Maria. From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex.. Annual Review of Cell and Developmental Biology. Vol. 37, 2021. A Columbia University neurobiologist provides a summary survey to date of her collegial project to conceptually and experimentally reconstruct how neural net faculties formed and emerged with regard to Vertebrate phylogeny, forebrain neuroanatomy, tetrapartite palliams and more across invertebrates, fishes, reptiles, birds and mammals onto curious, brilliant sapient selves. With the discovery of the incredible diversity of neurons, Ramon y Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural elements of nervous systems but evolutionary units, because their identities are encoded in genomes. With the advent of high-throughput cellular transcriptomics, neurons can be compared systematically across species. Research results now indicate that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. This review illustrates how various neuron types is key to observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution. (Abstract excerpt) Trianni, Vito, et al. Swarm Cognition: An Interdisciplinary Approach to the Study of Self-Organizing Biological Collectives. Swarm Intelligence. 5/1, 2011. Computer scientists review innate tendencies in such creaturely assemblies not only toward a composite organismic state, but also to achieve an effective group intelligence. Basic elements of cognition have been identified in the behaviour displayed by animal collectives, ranging from honeybee swarms to human societies. For example, an insect swarm is often considered a “super-organism” that appears to exhibit cognitive behaviour as a result of the interactions among the individual insects and between the insects and the environment. Progress in disciplines such as neurosciences, cognitive psychology, social ethology and swarm intelligence has allowed researchers to recognize and model the distributed basis of cognition and to draw parallels between the behaviour of social insects and brain dynamics. In this paper, we discuss the theoretical premises and the biological basis of Swarm Cognition, a novel approach to the study of cognition as a distributed self-organizing phenomenon, and we point to novel fascinating directions for future work. (Abstract, 3) Tschacher, Wolfgang and Jean-Pierre Dauwalder, eds. The Dynamical Systems Approach to Cognition. Singapore: World Scientific, 2003. Generally based on the synergetics approach, it highlights the work of Esther Thelen and Scott Kelso, among others. As a result, universal self-organizing systems are seen to exhibit their own “intentionality.” We quote form the publisher’s website. The shared platform of the articles collected in this volume is used to advocate a dynamical systems approach to cognition. It is argued that recent developments in cognitive science towards an account of embodiment, together with the general approach of complexity theory and dynamics, have a major impact on behavioral and cognitive science. The book points out that there are two domains that follow naturally from the stance of embodiment: first, coordination dynamics is an established empirical paradigm that is best able to aid the approach; second, the obvious goal-directedness of intelligent action (i.e., intentionality) is nicely addressed in the framework of the dynamical synergetic approach. Vallverdu, Jordi, et al. Slime Mould: The Fundamental Mechanisms of Cognition. Biosystems. Online January, 2018. (arXiv:1712.00414). A premier 10 person team including Michael Levin, Frantisek Baluska, Hector Zenil and Andrew Adamatzky proceed to trace a minimal proto-conscious cognizance to this generic single cellular organism. By so doing, as the quotes cite, an evolutionary continuity from life’s rudimentary advent all the way to our composite sapient reconstruction can be traced. By this synoptic view, an overall autopoiesis, self-sentience, inter-relational emergence distinguished by a quickening integrated intelligence, is illumed. A further tacit sense of natural, software-like algorithms at work separate from and prior to any post-selection is evoked. The slime mould Physarum polycephalum has been used in developing unconventional computing devices in which the slime mould played a role of a sensing, actuating, and computing device. These devices treated the slime mould rather as an active living substrate yet the slime mould is a self-consistent living creature which evolved for millions of years, but in any case, that living entity did not own true cognition, just automated biochemical mechanisms. To "rehabilitate" the slime mould from the rank of a purely living electronics element to a "creature of thoughts" we are analyzing the cognitive potential of P. polycephalum. We base our theory of minimal cognition of the slime mould on a bottom-up approach, from its biological and biophysical nature and regulatory systems using frameworks such as (Pamela) Lyon's biogenic cognition, (Gregory) Bateson's "patterns that connect" framework, (Humberto) Maturana's autopoetic network, and proto-consciousness inputs. (Abstract edits) Van Schaik, Carel, et al. A Farewell to the Encephalization Quotient: A New Brain Size Measure for Comparative Primate Cognition. Brain, Behavior and Evolution. July, 2021. University of Zurich, Neuchatel University and Stockholm University senior scholars describe a revised, updated version of this popular measure to provide a more utile accurate valuation. In any event, a relative parallel track of cerebral volumetric capacity with life’s temporal evolution seems to be in effect. And we make note that just now an Earthwise Encephalization can engage in this retrospective survey of whence we one and all came to be able to do this. Venditti, Chris. et al. Co-evolutionary dynamics of mammalian brain and body size. Nature Ecology & Evolution. 8/8, 2024. University of Reading and Durham University bioanthropologists including Robert Barton (search) describe a latest geometric measurement technique by which to quantify this title timeline. We record to acknowledge and consider. Despite decades of comparative studies, puzzling aspects of the relationship between mammalian brain and of body mass continue to defy satisfactory explanation. Here we show that several issues arise from fitting log-linear models to the data because, as we argue, the correlated evolution of brain and body mass is in fact log-curvilinear. By way of scaling relationships, we document varying rates of relative brain mass evolution across the mammalian phylogeny. As a result, we find a trend in only three orders, with the strongest in primates as it sets the stage for the rapid directional increase that produced the computational powers of the human brain. Vincent, Jean-Didier and Pierre-Marie Lledo. The Custom-Made Brain: Cerebral Plasticity, Regeneration, and Enhancement. New York: Columbia University Press, 2014. Veteran French neuroscientists survey the billion year course of how neural anatomies and cognitions came to form, evolve, ramify, think, and learn on their way to knowing sentience in our retrospective human phase. We cite because in a section named Behind Diversity in the Animal Kingdom, a Single Plan the work describes how life’s evolutionary developmental encephalization of cerebral bilateral topology and thought is again much like an embryonic gestation. Vitiello, Giuseppe. The Use of Many-body Physics and Thermodynamics to Describe the Dynamics of Rhythmic Generators in Sensory Cortices Engaged in Memory and Learning. Current Opinion in Neurobiology. 31/1, 2015. In a special issue on Brain Rhythms and Dynamic Coordination edited by Gyorgy Buzsaki and Walter Freeman, a University of Salerno physicist (search), often a collaborator with WF, advises that if neural faculties are seen as continuous with and arising from such natural depths, this can facilitate their full understanding. The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning. (Abstract)
[Prev Pages] Previous | 7 | 8 | 9 | 10 | 11 | 12 | 13 Next
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |