
III. Ecosmos: A Revolutionary Fertile, Habitable, SolarBioplanet, Incubator LifescapeE. Systems Cosmology: Fractal SpaceTimeMatter Aschwanden, Markus. SelfOrganized Criticality in Solar Physics and Astrophysics. http://arxiv.org/abs/1003.0122. A paper presented at the 2010 Interdisciplinary Symposium on Chaos and Complex Systems, in Istanbul, Turkey, which shows how nonlinear SOC, as a “universal and ubiquitous law” throughout nature, can be likewise found to hold for an array of celestial phenomena. The author’s forthcoming book on the subject SelfOrganized Criticality in Astrophysics will be out in January 2011 from Springer. On a most general level, SOC is the statistics of coherent nonlinear processes, in contrast to the Poisson statistics of incoherent random processes. The SOC concept has been applied to laboratory experiments (of rice or sand piles), to human activities (population growth, language, economy, traffic jams, wars), to biophysics, geophysics (earthquakes, landslides, forest fires), magnetospheric physics, solar physics (flares), stellar physics (flares, cataclysmic variables, accretion disks, black holes, pulsar glitches, gamma ray bursts), and to galactic physics and cosmology. (Abstract)
Aschwanden, Markus, ed.
SelfOrganized Criticality Systems.
www.astro.umontreal.ca/~paulchar/ysael/SOC.pdf.
A state of the SOC science collection by a similar team that posted an ISSI (International Space Science Institute) edition at arXiv:1403.6528. It appeared in 2013 as an early notice of nature’s complex, dynamic propensity being found across cosmic to climatic realms. An Introduction by Norma Crosby and papers such as SOC and Fractal Geometry by James McAteer, and Power Laws of Recurrence Networks by Yong Zou, et al, introduce a unique array of invariant features. Searching for a Common Signature: What Does it All Mean? Does there exist a common “avalanche" signature? If yes, what does this all mean in a global way? How does the world and the Universe connect? Is there a universal signature that places constraints on the energy distribution of everything in the Universe? SOC behavior provides us a unique way to interpret the behavior of \avalanches" in a global way  is there a common thread in nature? (Norma Crosby, 14) Aschwanden, Markus, et al. Order Out of Randomness: SelfOrganization Processes Astrophysics. arXiv:1708.03394. On this popular preprint site, this is a 97 page posting by a premier 18 member team including Virginia Trimble, Juergen Kurths, Alexei Kritsuk, and William Bethune. Circa January 2018, the entry could be seen, after years of wideranging research, as a major fulfillment, synthesis and statement of an innately nonlinear, animate, selfdeveloping, scalar cosmic complexity. With many examples from planetary spacings, solar magnetic fields to galactic physics, it can well represent a worldwide discovery of an evolutionary universe that forms and arranges itself by an independent, generative agency at each and every place and time. An appended table lists some 50 more instances from chemical to biological, neural, cooperative, cultural, and artificial realms as they exemplify the same phenomena. While it is alluded that something does seem to be going on by itself, the next step to allow a realization of a greater genesis of which our humankinder presence and conscious quantification is a centrally intended phenomenon is not yet taken. Selforganization is a property of dissipative nonlinear processes that are governed by an internal driver and a positive feedback mechanism, which creates regular geometric and/or temporal patterns and decreases the entropy, in contrast to random processes. Here we investigate for the first time a comprehensive number of 17 selforganization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Selforganizing systems create spontaneous order out of randomness during the evolution from an initially disordered system to an ordered stationary system, via quasiperiodic limitcycle dynamics, harmonic mechanical resonances, or gyromagnetic resonances. (Abstract excerpt) Asorey, Manuel. Space, Matter and Topology. Nature Physics. 12/7, 2016. In a Focus on Topological Matter section, a Zaragoza University, Spain, theorist describes “hidden” geometric propensities, akin to multiplex networks (search Kleineberg), that suffuse an atomic to cosmic materiality. The key insight is that constructive propensities possess their own reality along with the elements they connect. Some other papers are Topological States in Photonic Systems, and Quasiperiodicity and Topology Transcend Dimensions. This review is timely because in September the 2016 Nobel Prize in Physics was awarded for topological phase transitions and material geometries, noted in the November issue editorial. In late 2016, as these network and structural properties gain wide recognition an intrinsic, common dynamic system becomes evident. Auffray, Charles and Laurent Nottale. Scale Relativity Theory and Integrative Systems Biology. Progress in Biophysics and Molecular Biology. 97/1, 2008. A biologist and physicist respectively, each a research director at CNRS, the French National Center for Scientific Research, provide a two part explanation for a true evolutionary emergence: 1. Founding Principles and Scale Laws Macroscopic QuantumType Mechanics, and 2. Macroscopic Quantum –Type Mechanics. Nottale is the lead author for the second paper, see also above. But their work ought to be seen as more than another theory, rather a different kind of recapitulative universe is revealed which poses a “grand challenge” to discern its “multiscale integration” across life’s ascendant array from arable quanta to our sentient witness. In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantumlike selforganized dynamics. (115) BandaBarragan, Wladimir, et al. On the Dynamics and Survival of Fractal Clouds in Galactic Winds. arXiv:1901.06924. Astrophysicists posted in Germany, Ecuador, Australia, and Japan, surely a global galaxy, quantify how all manner of celestial, interstellar gaseous phenomena seem to draw upon and exhibit a common selfsimilar geometry. Recent observations suggest that dense gas clouds can survive even in hot galactic winds. Here we show that the inclusion of turbulent densities with different statistical properties has significant effects on the evolution of windswept clouds. We compare uniform, fractal solenoidal, and fractal compressive cloud models in both 3D and 2D hydrodynamical simulations. By comparing the cloud properties at the destruction time, we find that dense gas entrainment is more effective in uniform clouds than in either of the fractal clouds, and it is more effective in solenoidal than in compressive models. (Abstract excerpt) Barrie, Neil, et al. Natural Inflation with Hidden Scale Invariance. Physics Letters B. Online March, 2016. University of Sydney physicists draw on recent findings to advance an intrinsic, recurrent in kind, genesis universe whence a collaborative sentience on a favorable bioworld, some 13.8 billion years on, can begin to achieve this cosmic selfdiscovery. We propose a new class of natural inflation models based on a hidden scale invariance. In a very generic Wilsonian effective field theory with an arbitrary number of scalar fields, which exhibits scale invariance via the dilaton, the potential necessarily contains a flat direction in the classical limit. This flat direction is lifted by small quantum corrections and inflation is realised without need for an unnatural finetuning. (Abstract) Bartelmann, Matthias. Structure Formation in the Universe. MeyerOrtmanns, Hildegard and Stefan Thurner, eds. Principles of Evolution: From the Planck Epoch to Complex Multicellular Life. Berlin: Springer, 2011. A University of Heidelberg astronomer, as much the whole volume, waxes over a nonlinear, nonequilibrium cosmos whose intrinsic dynamical propensities seem to impel as if genetically, a progressive complexification from protoplanets to fractal galaxies. Baryshev, Yurji and Pekka Teerikorpi. Discovery of Cosmic Fractals. Singapore: World Scientific, 2002. Astronomers from Russia and Finland provide the first fulllength book on the subject of how the evolving galactic universe is arranged in a hierarchical, selfsimilar, fractal manner. The authors range widely from a historical survey of such a celestial model through technical and observational details to its increasing verification by a worldwide community. Benedetti, Dario. Fractal Properties of Quantum Spacetime. Physics Review Letters. 102/111303, 2009. A Perimeter Institute wizard contends that via a mathematical “noncommutativity,” (for which it is difficult to get a good definition on the Web), quantum realms, in their group symmetries, are quite distinguished by fractal geometries. After some arcaneness such as kdeformed KleinGordon operators, what one might take home is an inkling of an implicate, dare we say genetic, material essence that repeats itself over and over in a wholly selfsimilar, living, developmental cosmos. Bethune, William, et al. SelfOrganization in Protoplanetary Disks. arXiv:1603.02475. As the Abstract conveys, University of Grenoble astronomers describe how globular, orbital objects come to exist by way of physical selforganizing dynamics. Recent observations revealed organised structures in protoplanetary disks, such as axisymmetric rings or horseshoe concentrations evocative of largescale vortices. These structures are often interpreted as the result of planetdisc interactions. However, these disks are also known to be unstable to the magnetorotational instability (MRI) which is believed to be one of the dominant angular momentum transport mechanism in these objects. We confirm the transition from a turbulent to an organised state as the intensity of the Hall effect is increased. For intermediate Hall intensity, the flow selforganises into longlived magnetised vortices. Neither the addition of a toroidal field nor ohmic or ambipolar diffusion drastically change this picture in the range of parameters we have explored. The ability of these structures to trap dust particles in this configuration is demonstrated. We conclude that HallMRI driven organisation is a plausible scenario which could explain some of the structures found in recent observations. (Abstract) Bhattacharyya, Swarnapratim, et al. Multifractality in Charged Pion Production at a Gew GeV/n. Physica A. Online November, 2011. As the paper reports, Jadavpur University, Kolkata, physicists find even subatomic realms and reaches to be equally characterized by nature’s universal selfsimilar geometries. The multifractal analysis of charged pion produced in 16O–AgBr interactions at 2.1 AGeV and 24Mg–AgBr interactions at 4.5 AGeV has been investigated using the Takagi moment method in pseudorapidity space. The generalized fractal dimensions Dq are determined for these two interactions for different orders of moment. Experimental data reflects multifractal geometry in the multipion production process. From the knowledge of the generalized fractal dimensions Dq, the multifractal specific heat has also been evaluated for these data. (Abstract)
Previous 1  2  3  4  5  6  7  8  9  10 Next [More Pages]


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 