(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VI. Earth Life Emergence: Development of Body, Brain, Selves and Societies

1. Systems Physiology and Psychology: Somatic and Behavioral Development

Cao, Miao, et al. Developmental Connectomics from Infancy through Early Childhood. Trends in Neuroscience. 40/8, 2017. Connectome: a complete set of neural elements (neurons, brain regions, etc.) and their interconnections (synapses, fiber pathways, temporal correlations.) National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, and Department of Radiology, Children’s Hospital of Philadelphia researchers scope out a further apply of neural imaging studies such as the Human Connectome Project to this relevant neonate to child life stage. Two salient efforts are the Developing Human Connectome Project and the Baby Connectome Project (Google each). A main intent is to quantify an optimal global balance between information segregation and integration.

The human brain undergoes rapid growth in both structure and function from infancy through early childhood, and this significantly influences cognitive and behavioral development in later life. A newly emerging research framework, developmental connectomics, provides unprecedented opportunities for exploring the developing brain through non-invasive mapping of structural and functional connectivity patterns. Within this framework, we review recent neuroimaging and neurophysiological studies investigating connectome development from 20 postmenstrual weeks to 5 years of age. Specifically, we highlight five fundamental principles of brain network development during the critical first years of life, emphasizing strengthened segregation/integration balance, a remarkable hierarchical order from primary to higher-order regions, unparalleled structural and functional maturations, substantial individual variability, and high vulnerability to risk factors and developmental disorders. (Abstract)

Courage, Mary and Mark Howe. From Infant to Child: The Dynamics of Cognitive Change in the Second Year of Life. Psychological Bulletin. 128/2, 2002. A historical and current review of the field whose studies have ranged from the constructivism of Piaget to new nativism and modularity theories. In this transitional second year occurs self-awareness and the profusion of language.

For example, the development of behavior that appears to be discontinuous or disorderly at the performance level but which arises from underlying processes that are themselves continuous and orderly (e.g., an infant’s vocabulary acquisition or first steps) is consistent with the self-organizing properties that typify non-linear dynamic systems. (268)

Dahmen, David, et al. Second Type of Criticality in the Brain Uncovers Rich Multiple-Neuron Dynamics. Proceedings of the National Academy of Sciences. 116/13051, 2019. Julich Research Center, Germany neuroresearchers at once confirm a cerebral tendency to settle at this optimum state, while teasing out another neural way that brains avail this productive balance.

Parallel recordings of motor cortex show weak pairwise correlations on average but a wide dispersion across cells. This observation runs counter to the prevailing notion that optimal information processing requires networks to operate at a critical point, entailing strong correlations. We here reconcile this apparent contradiction by showing that the observed structure of correlations is consistent with network models that operate close to a critical point of a different nature than previously considered: dynamics that is dominated by inhibition yet nearly unstable due to heterogeneous connectivity. Our findings provide a different perspective on criticality in neural systems: network topology and heterogeneity endow the brain with two complementary substrates for critical dynamics of largely different complexities. (Significance)

Ellis, Bruce and David Bjorklund, eds. Origins of the Social Mind: Evolutionary Psychology and Child Development. New York: Guilford Press, 2005. An impressive volume in support of evolutionary development psychology, which blends Darwinism with epigenetic influences and complex developmental systems theory in the study of children’s behavioral and cognitive maturation. In this way both self-organization and selection can come into play.

Farris, Sarah. Evolution of Brain Elaboration. Philosophical Transactions of the Royal Society B. Vol.370/Iss.1684, 2015. In a special issue on the Origin and Evolution of the Nervous System, in these 2010s when scientific fields are reaching integral confirmations, a West Virginia University neurobiologist perceives life’s encephalization of neural anatomies as a developmental ramification from a common topology present in the earliest rudiments. See also Convergent Evolution of Complex Brains and High Intelligence by Gerhard Roth in this edition (Abstract below). Life’s emergent cerebration again appears to follow a prescribed, expansive trajectory, akin to an embryogeny, toward better cognizance of which such studies are its latest worldwide phase.

Large, complex brains have evolved independently in several lineages of protostomes and deuterostomes. Sensory centres in the brain increase in size and complexity in proportion to the importance of a particular sensory modality, yet often share circuit architecture because of constraints in processing sensory inputs. The selective pressures driving enlargement of higher, integrative brain centres has been more difficult to determine, and may differ across taxa. The capacity for flexible, innovative behaviours, including learning and memory and other cognitive abilities, is commonly observed in animals with large higher brain centres. Despite differences in the exact behaviours under selection, evolutionary increases in brain size tend to derive from common modifications in development and generate common architectural features, even when comparing widely divergent groups such as vertebrates and insects. These similarities may in part be influenced by the deep homology of the brains of all Bilateria, in which shared patterns of developmental gene expression give rise to positionally, and perhaps functionally, homologous domains. Other shared modifications of development appear to be the result of homoplasy, such as the repeated, independent expansion of neuroblast numbers through changes in genes regulating cell division. The common features of large brains in so many groups of animals suggest that given their common ancestry, a limited set of mechanisms exist for increasing structural and functional diversity, resulting in many instances of homoplasy in bilaterian nervous systems. (Farris Abstract)

Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. (Roth Abstract)

Fitch, W. Tecumseh, et al. Social Cognition and the Evolution of Language. Neuron. 65/6, 2010. University of Vienna cognitive biologists argue that an expansion over the past decade of the domains and extent of cultural activities from primates across to mammalian and avian species reveals many “homologous and analogous similarities.” So once more nature is found to repeat and recapitulate, in stepwise fashion, the same native, cumulative edification.

Fogel, Alan and Andrea Garvey. Alive Communication. Infant Behavior and Development. 30/2, 2007. A systems perspective increasingly illumines child psychology, here applied to explain social discourse, especially between child and care-giver, as a self-organizing dialogue.

The concept of alive communication focuses on the dynamically changing aspects of communication using three related components: coregulation, ordinary variability and innovation. (251)

Fogel, Alan, et al, eds. Human Development in the Twenty-First Century. Cambridge: Cambridge University Press, 2008. With co-editors Barbara King and Stuart Shanker, a manifesto for a dynamical “systems psychology” (my phrase) to move the endeavor from individuals alone to the equally real connections and relationships between people. Four parts range from genetics and environments to children in families and societies and to mental health issues. Since the early 1990s, much through the efforts of Linda Smith and the late Esther Thelen, as this site documents, a revolution to reconceive child and developmental science in terms of dynamic systems theory or DST has been in process. The above volume is a sign it has reached a maturity both in concept and application. An essay book review by David Witherington and Tessa Margett can be found in Human Development (52/2, 2009) from which the quote accrues.

The dynamic systems approach is rooted in the centrality of relationship for understanding complex form, both in the real-time generation and maintenance of pattern and in the ontogenetic emergence and consolidation of pattern. In contrast to the more traditional, reductionist approach to understanding organization, which relies on a breaking down of systems in order to study their parts isolation of one another, the dynamic systems approach emphasizes the need for studying the relationships that exist among parts rather than the parts themselves. (251)

Friederici, Angela, et al. Maturation of the Language Network: From Inter- to Intrahemispheric Connectivities. PLoS One. 6/6, 2011. We note this work by Max Planck Institute for Human Cognitive and Brain Sciences neuropsychologists because it describes youth to adult transitions from an earlier mode of cross-hemisphere communication to later more separate asymmetries. On measure, this sequence moves from an integral, right, balance to a left, detailed, verbose emphasis, which human cognitive history neatly seems to recapitulate.

Language development must go hand-in-hand with brain maturation. Little is known about how the brain develops to serve language processing, in particular, the processing of complex syntax, a capacity unique to humans. Behavioral reports indicate that the ability to process complex syntax is not yet adult-like by the age of seven years. Here, we apply a novel method to demonstrate that the basic neural basis of language, as revealed by low frequency fluctuation stemming from functional MRI data, differs between six-year-old children and adults in crucial aspects. Although the classical language regions are actively in place by the age of six, the functional connectivity between these regions clearly is not. In contrast to adults who show strong connectivities between frontal and temporal language regions within the left hemisphere, children's default language network is characterized by a strong functional interhemispheric connectivity, mainly between the superior temporal regions. These data indicate a functional reorganization of the neural network underlying language development towards a system that allows a close interplay between frontal and temporal regions within the left hemisphere. (Abstract)

Gao, Helena Hong and John Holland. Agent-Based Models of Levels of Consciousness. Santa Fe Institute Working Papers. 08-12-047, 2008. As part of a SFI project on language complexities (search Beckner), a Nanyang Technological University developmental linguist and the University of Michigan founder of complex adaptive systems theory perceive a six stage, infant to child, process by which reflective awareness arises: Unconscious (instinctive) activity, Minimal, Stimulus-response, Simple recursive (ask for food when visible), Extended recursive (I’m hungry), and Self-consciousness. A tacit assumption would seem to be our individual recapitulations of how primates evolved stepwise unto knowing utterances.

This paper is based on recent interdisciplinary experimental studies that emphasize the steps in language acquisition during the first few years of life. These steps are characterized as changes in levels of consciousness. The object is to place successive levels of consciousness in a complex adaptive systems (CAS) framework, a framework that centers on learning agents that interact via exchanges of signals such as gestures and utterances. The CAS framework thus provides a strong emphasis on the social nature of language acquisition and evolution. The models described are exploratory, not predictive. As such, the models are meant to suggest new mechanisms and experiments that will increase our understanding of language. (Abstract)

Gershkoff-Stowe, Lisa and Esther Thelen. U-Shaped Changes in Behavior: A Dynamic Systems Perspective. Journal of Cognition and Development. 5/1, 2004. As everyone is familiar with, we learn things, then forget or regress, and later on become more accomplished. These child psychologist authors find this ubiquitous path can be conceived as a self-organizing complex system which constantly seeks a better organization from a multitude of interacting modular-like influences.

Gervain, Judit. The Role of Prenatal Experience in Language Development. Current Opinion in Behavioral Sciences. 21/62, 2018. This entry by a Laboratoire Psychologie de la Perception, CNRS, Paris linguist is able to report that our human proclivity for linguistic discourse is so strong it can be detected in fetal stages. An infant’s preference for holistic images can be traced back to receptions of rhythmic prosody even in the womb.

Human infants are born linguistic citizens of the world, possessing broad-based, universal perceptual and learning abilities that allow them to start learning any language. After several months of experience, their linguistic system becomes tuned to the sound patterns of their native language(s). Recent results on newborns’ speech perception abilities suggest that this classical view might need to be nuanced, as fetuses seem to learn more from their prenatal experience with speech than previously believed. This paper reviews the growing body of evidence suggesting that newborns are familiar with the prosody of the languages heard in utero, and discusses the implications of this ‘prenatal prosodic bootstrapping’ for subsequent language acquisition. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next