(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

V. Life's Corporeal Evolution Encodes and Organizes Itself: An EarthWin Genesis Synthesis

A. A Major Emergent Evolutionary Transitions Scale

Hoffecker, John. Modern Humans: Their African Origin and Global Dispersal. New York: Columbia University Press, 2017. The University of Colorado anthropologist achieves a latest comprehensive survey of homo sapiens’ arduous migratory diaspora as it has spread over the continents. He goes on to propose that this full anthropic expanse ought to be seen as a major evolutionary transition. Within this nested, emergent scale, an enabling feature is a new mode of species-wide neuronal information. Hoffecker then aligns with John Mayfield’s view (search) that life’s Metazoan evolution might be well seen as a selective, computational optimization. As a result, human beings might proceed to “creatively compute” artificial, algorithmic structures and societies, so as to intentionally advance to a viable planetary culture. As his 2013 paper mused (search), a super-brain via syntactic language seems in consequent effect with its own “collective computation” (see Jessica Flack and Eleanor Brush for more on this phrase).

Modern Humans is a vivid account of the appearance of anatomically modern people in Africa less than half a million years ago and their later spread throughout the world. John F. Hoffecker demonstrates that Homo sapiens represents a “major transition” in the evolution of living systems in terms of fundamental changes in the role of non-genetic information. He also draws on information and complexity theory to explain the emergence of Homo sapiens in Africa several hundred thousand years ago and the rapid and unprecedented spread of our species into a variety of environments in Australia and Eurasia, including the Arctic and Beringia, beginning between 75,000 and 60,000 years ago. (book)

Information, Complexity, and Human Evolution It is difficult, if not impossible, to explain the origin and dispersal of homo sapiens within the framework of the modern evolutionary synthesis. Modern humans are inextricably tied to non-genetic (epigenetic) forms of information that evolve in accordance with processes not described in the synthesis of natural selection and population genetics. A wider evolutionary framework that encompasses multiple forms of information and both living and nonliving complex systems (that is a broader definition of life) is required. (41)

Evolving a Major Transition in the Internet Age. evolution-institute.org/evolving-a-major-transition-in-the-internet-age. This 2020 posting by the veteran environmentalist and filmmaker in collaboration with the SUNY Binghamton evolutionary practitioner and author David Sloan Wilson is located on Wilson’s The Evolution Institute site. By way of text and a DSW interview, a project is scoped out is based upon a likely but rare perception that a further emergent stage of global proportions can be seen as much underway. By this extension, our anthropocene phase is composed of wholly interconnected information but beset by disjointed nations and societies. A vital need is to implement the “new ways to cooperate at higher levels of complexity” that usually distinguish and facilitate these transitions. To date, this is only concerted effort to carry forth life’s ascendant, quickening scale to its sustainable planetary fulfillment.

PROSOCIAL is a framework for improving the efficacy of groups that is being developed by the Evolution Institute. It is based on eight core design principles – originally derived by Elinor Ostrom for groups who manage natural resources – that are needed by most groups whose members must work together to achieve common goals: Strong group identity and understanding of purpose; Fair distribution of costs and benefits; Inclusive decision-making; Monitoring agreed-upon behaviors; Fast and fair conflict resolution; Appropriate relations with other groups. (Alan Honick website)

Kesebir, Selin. The Superorganism Account of Human Sociality. Personality and Social Psychology Review. 16/3, 2012. The Turkish-American, University of Virginia social psychologist describes her thorough doctoral study of how human groupings seem to possess or be moving toward organism-like traits and states. She first reviews prior colony models, and goes on to the major transitions view of emergent evolutionary stages, which are seen akin to superorganisms. Five salient features are then applied to human assemblies: Integration of lower-level units through communication, Shared intentionality and social identity processes, Low heritable variation among the entities, A common destiny, and Mechanisms to resolve conflicts. As the quotes aver, she concludes that some form and temperament like this does appears to be going on.

Life forms are organized in nested clusters. Genes are bundled in chromosomes that occur in cells. Cells are joined together in multi-cellular organisms, and some multi-cellular organisms, such as bees and ants, live in societies. This hierarchical organization strongly suggests that the amazing diversity of life forms is partly due to the grouping of biological units into higher-level units. Although this idea has been endorsed since the end of the 19th century, it has not been part of the mid-20th century evolutionary synthesis, most likely because it lacked a strong theoretical underpinning (Bourke, 2011). The dynamic underlying the hierarchical organization of life forms has been called major transitions in evolution (Maynard Smith & Szathmáry, 1995). A major transition in evolution occurs when individual organisms become so integrated that they transform into a higher-level organism in their own right. (235)

Looking at human societies through a superorganism lens allows for a clearer appreciation of the full scope of human existence. A unifying narrative emerges for phenomena that are treated piecemeal within an individualist paradigm. According to this narrative, cultural meaning systems, shared intentionality, norm compliance, deference to authority, social identity processes, religiosity, and morality can be understood parsimoniously as manifestations of the same dynamics that create superorganism-like social structures. Superorganisms thus offer a useful heuristic around which to organize our understanding of human sociality. (251)

The task of this paper was describing how and when human groups are like superorganisms. The answers raise a third question that I have not addressed: Why are human groups like superorganisms? The why question invites an evolutionary explanation. Specifically, we have to ask whether the superorganism metaphor works because humans actually have gone through a major evolutionary transition to arrive at superorganismic capacity. Do we have in our hands a case of convergent evolution rather than just a surface resemblance? Even though this paper did not seek to make an evolutionary case for a major transition account, the reviewed evidence speaks to the possibility of a major transition for two reasons. First and simply, the abundance of superorganismic human features suggests that a major transition might have taken place. If human groups act like superorganisms in so many ways, we have to consider the possibility of a major evolutionary transition. (251)

Kirby, Simon. Transitions: The Evolution of Linguistic Replicators. Binder, Phillippe and Kenny Smith, eds. The Language Phenomenon: Human Communication from Milliseconds to Millennia. Berlin: Springer, 2013. In this unique volume, the University of Edinburgh chair of language evolution turns to the major transitions scale to situate human linguistic competence within its prior sequential emergence. Eight stages from replicating biomolecules to human societies are each arise due to a novel informative venue as “new ways of communicative transmission.” This persistent temporal context can then expand appreciations of our sapient literacy. In linguistic terms, a better sense of compositionality, holophrastic utterances, and iterated learning is thus gained.

Maynard Smith & Szathmáry’s (1995) work provides a rich framework for thinking about replication. They themselves identified the importance of language in this light, but language is a new system of replication in more than one sense: it is both an enabler of cultural replicators with unlimited heredity, and also a new kind of evolutionary system itself. Iterated learning is the process of linguistic transmission, and it drives both language change and the transitions to qualitatively new kinds of linguistic system. By seeing language as an evolutionary system, the biggest payoff we get may be the ability to take biologists’ insights into the evolution of life and apply them to the evolution of language. (135)

Kun, Adam. The Major Evolutionary Transitions and Codes of Life. Biosystems. September, 2021. In this journal which is more open to holistic vistas, a Parmenides Center for the Conceptual Foundations of Science, Munich and collaborator with Eors Szathmary at Eotvos Lorand University, Budapest provides a novel synthesis between this popular view of life’s oriented developmental scales, and an expanded presence of many genetic-like code qualities. As they cross-fertilize and inform, both aspects benefit and grow in explanatory import. Can yet we move closer to truth and real discovery in time?

Major evolutionary transitions as well as the evolution of codes of life are key elements in macroevolution which are characterized by increase in complexity. These nested emergences ensue by a transition in individuality and by the evolution of a novel mode of using, transmitting or storing information. Here is where codes of life enter the picture. This flexibility allows information to be employed in a variety of ways, which can fuel evolutionary innovation. The collation of the list of major evolutionary transitions and the list of codes of life show a clear pattern: codes evolved prior to a major evolutionary transition and then played roles in the transition and/or in the transformation of the new individual. The evolution of a new code of life then can facilitate major evolutionary transitions. This effect could help us to identify new organic codes.

Marcello Barbieri lists five characteristics of codes of life that are important for the history of life. (1) Discontinuity: Codes of life represent something abruptly novel, not just gradual improvement of something that already exists. (2) Invariance: Codes of life do not change in the sense that there is a strong selection for their conservation. (3) Additivity: More than one types of code can be included in the same lineage, and one code does not erase the other. (4) Stability: Each code remains a viable form, and organism harbouring them still exist, thus the appearance of a new code does not invalidate former codes of life. And (5) Complexity: The evolution of a new code increases complexity. If we contrast this list with characteristics of the major evolutionary transitions, then we nearly find the same list. They are fundamental events in the history of life (cf. discontinuity) which always increase complexity. METs are also mostly irreversible (cf. invariance). METs happen in succession too and an organism can be the product of multiple METs. (2)

Lewis, Samuel, et al. Darwin’s Aliens. International Journal of Astrobiology. Online November, 2017. In consideration that a general Darwinian process ought to hold across life’s exoplanet evolution, Oxford University zoologists including Stuart West (search) apply expanded concepts of natural selection along with emergent complexities and major transitions to imagine exocreatures life forms. Figure 8 displays a nested scale from genomes to cells, multicellular symbiosis, aka interspecies mutualism, speciation, and onto societal organisms. This earthly retrospect concludes that although “organisms” could appear quite different, since the same basic scheme would be at work, a deeper familiarity should consistently prevail.

Making predictions about aliens is not an easy task. Most previous work has focused on extrapolating from empirical observations and mechanistic understanding of physics, chemistry and biology. Here we show how evolutionary theory can be used to make predictions about aliens. We argue that aliens will undergo natural selection – something that should not be taken for granted but that rests on firm theoretical grounds. In particular, we can say something about how complexity will arise in space. Complexity has increased on the Earth as a result of a handful of events, known as the major transitions in individuality. Major transitions occur when groups of individuals come together to form a new higher level of the individual, such as when single-celled organisms evolved into multicellular organisms. We suggest that major transitions are likely to be the route to complexity on other planets, and that we should expect them to have been favoured by similarly restrictive conditions. Thus, we can make specific predictions about the biological makeup of complex aliens. (Abstract)

To conclude so far, empirical observation tells us that complexity has increased on earth through major transitions. Evolutionary theory tells us that for major transitions to occur, the conflict must be eliminated. The theory also tells us what conditions lead to the elimination of conflict. The empirical data agree with the predictions of the theory, in that major transitions have only occurred in the extreme conditions that effectively remove conflict. (5)

Maynard Smith, John and Eors Szathmary. The Major Transitions in Evolution. Oxford, UK: Freeman, 1995. A significant statement by the late (1920-2004) University of Sussex and the Eotvos Lorand University, Budapest, theoretical biologist, and which proposes and outlines a sequential series of emergent levels generally cited as atomic, molecular, cellular, organismic, neuronal, primate, and human. Each stage is then distinguished by a new template or vehicle to transmit hereditary information from DNA to language. Originally posted in 2004, this perception has become by 2010 widely accepted and cited in the literature as articulating a real evolutionary advance, whose revolutionary implications are just beginning to be appreciated.

Muller, Viktor, et al. An Evolutionary Perspective on the Systems of Adaptive Immunity. Biological Reviews. Online July, 2017. As the quotes convey, Muller and Eors Szathmary, Eotvos University, Hungary, Rob de Boer, Utrecht University, and Sebastian Bonhoeffer, ETH Zurich offer an extended thesis about systemic ways that creaturely organisms attain a distinct individual identity by such protections against outside agents. By this analysis, a better sense of what may constitute a sequential major evolutionary transition is said to be possible.

We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function-based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to ‘learn’ by cumulative trial-and-error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback.

We argue that the origin of Darwinian immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher-level units entail the suppression of selection at lower levels, Darwinian immunity re-opens cell-level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell-level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re-invented itself. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system – the two hallmarks of major evolutionary transitions. (Abstract)

The paradigm of major evolutionary transitions (METs) posits that the evolution of complexity in the history of life depended on a small number of fundamental changes in the way information is stored and transmitted between generations. Recurring themes associated with the transitions involve the emergence of new levels of selection and potential conflicts between the levels, novel informational (inheritance) systems, possible
mechanisms to acquire increasing complexity, increasing division of labour between the components of the system, and, in some cases, contingent irreversibility. While not every transition possesses all of these features, each of the major transitions created either a new level of selection (transition in individuality) and/or a novel informational system capable of unlimited heredity (in which the number of possible types vastly exceeds the number of individual entities, and stored information is open-ended). (6)

Nonacs, Peter, et al. Social Evolution and the Major Evolutionary Transition in the History of Life. Frontiers in Ecology and Evolution. December, 2021. The editors for this special section are Peter Nonacs UCLA (Center for Behavior, Evolution & Culture,) Karen Kapheim, Utah State University (comparative genomics) and Heikki Helantera, University of Helsinki, (evolutionary ecology) are deeply engaged in field and conceptual studies which could be well served by an endemic structural arrangement and emergent orientation (Brief capsules in their own words below.) As an observation, just as a teleologic course could no longer be ignored (section herein), so this nested scale from 1995 is now similarly gaining a full, revelant acceptance. Its inclusion then describes a revolutionary (EarthWin) appreciation of life’s true developmental gestation. A further merit is a strongest case to date for an ascendant personsphere sapience learning on her/his own.

Among the ten entries are an overview survey: Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations by Amanda Robin, et al, What Do We Mean by Multicellularity? The Evolutionary Transitions Framework Provides Answers by Caroline Rose and Katrin Hammerschmidt, The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality by Istvan Zachar, Gergely Boza The Major Transitions in Evolution: A Philosophy of Science Perspective by Samir Okasha and notably Design for an Individual: Connectionist Approaches to the Evolutionary Transitions in Individuality by Richard, Watson, et al (search)

In their classic 1995 book, John Maynard Smith and Eors Szathmáry sketched the evident presence of eight major evolutionary transitions (METs) in the long history of life on earth. But 27 years since, optional views, and detail debates about defining features and qualities still persist. Attempts to find deep, constant patterns and processes also go on, but have not yet integrated this entire sweep of evolution and ecology from replicating molecules to loquacious humans. It seemed appropriate to post a topical issue which could gather, assimilate and enjoin these many aspects, air specific issues and consider a common, nested sequence. To wit, METs are seen to occur as fusions of independent individuals into a higher order entity, along with a novel way that information is stored and transmitted. In addition, the ecological context where this ascendant course goes on is rarely considered. Into these 2020s, new findings and novel ideas about life’s developmental stirrings, genetic bases and consequent course to our consummate global retrospective could provide a salutary synthesis. (Nonacs, et al, Introduction excerpt)

I view my research program as the intersection of Evolutionary and Behavioral Ecology explores why questions and how issues. My students and I use several approaches from mathematical theories to empirical methods and field work in Panama. Although most of my work is with social insects, we are open to any system or species depending on how well suited they are to learn about vital evolutionary phenomena. (P. Nonacs)

I began my scientific life in Kay Holekamp's lab as at Michigan State University. After a stint as a zookeeper, I went to grad school at UCLA where my PhD was co-advised by Peter Nonacs and Bob Wayne as a shift from carnivores to bees. A post-doc followed in Gene Robinson's lab at UIUC, where I got into genomic aspects. I started my own lab at Utah State University in 2014. (K. Kapheim)

I see sociality, cooperation, conflict and communication everywhere. I work on genomics and transcriptomics, behaviour, chemical ecology and conceptual approaches to evolution. Beyond social insects, another necessary topic I study is the major transitions in evolution. In regard, I carry out theoretical and empirical analyses on similarities and differences between in complex multicellularity and superorganisms. (H. Helantera)

O’Malley, Maureen and Russell Powell. Major Problems in Evolutionary Transitions: How a Metabolic Perspective can Enrich Our Understanding of Macroevolution. Biology & Philosophy. 31/2, 2016. University of Sydney and Boston University philosophers of science argue that while this sequential scale from life’s molecular and genetic origins to human linguistic society has gained wide acceptance and usage, it can be improved and filled out by interactive aspects such as Earth’s biological oxygenation, along with acquisitions of mitochondria and plastid organelles. Although reservations are noted, this recurrent, nested emergence is seen as a valid, substantial work in process. While the original 1990s version by John Maynard Smith and Eors Szathmary had seven levels, it is now up to eight (search ES), and herein a ninth is added as the “origin of electronic cultural transmission.” But further concern is its appearance of an oriented ascent toward humankind, for the current paradigm denies any teleological ladder or scala naturae. This is a serious quandary, largely unnoticed or addressed, which blocks our efforts to fully reconstruct and interpret. An aim of this website is to document how human beings have more significance, worth, purpose, empowerment, and destiny than ever allowed or imagined.

Powers, Simon, et al. How Institutions Shaped the Last Major Evolutionary Transition to Large-Scale Human Societies. Philosophical Transactions of the Royal Society B. Vol.371/Iss.1687, 2016. As the four quotes describe, anthropologists Powers, and Carel Van Schaik, University of Lausanne, and Laurent Lehmann, University of Zurich, perceive further stages for this sequential, iterative scale of convergent synthesis due to novel information processing as human civilizations become at once more diversified while being integrated and organized.

What drove the transition from small-scale human societies centered on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default ‘Hobbesian’ rules of the ‘game of life’, determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization. (Abstract excerpts)

Life on the Earth has undergone a series of major evolutionary transitions in which individuals at a lower level of biological organization came together to form higher level units. Examples include replicating molecules coming together to form protocells, single-celled individuals evolving into multicellular organisms and solitary insects transitioning into eusocial colonies. The final transition proposed by Maynard Smith & Szathmáry is the origin of human societies. Yet, while the other major evolutionary transitions are starting to become well understood, there is a lack of a cohesive theory that can explain the transition from primate social organization based on kinship and personal exchange to human societies with large-scale impersonal exchange and division of labour between unrelated individuals.

Human societies do indeed largely meet the criteria for a major evolutionary transition. For example, just as epigenetic inheritance (a novel inheritance mechanism) allows the cells in a multicellular organism to differentiate and profit from a division of labour, so language (a novel cultural inheritance mechanism) allows human individuals to coordinate and specialize in different tasks, and so also to profit from a division of labour. Similarly, while by most measures, a multicellular organism is more complex than a single cell, so human chiefdoms are more complex than hunter–gatherer bands in terms of the number of hierarchical levels of organization. And just as multicellular organisms with division of labour and sterile somatic cells gradually evolved from single-celled ancestors, so cultural phylogenies (based on language trees) point to states evolving gradually from chiefdoms, which in turn evolved gradually from hunter–gatherer macro-bands and tribes.

We propose to subdivide the major transition to large-scale human societies into four distinct, smaller transitions. (i) The origin of the human hunter–gatherer niche, characterized by large but hard to acquire food packages, allomaternal care and egalitarian social structure. (ii) The origin of language, a novel unlimited inheritance system that strongly facilitates cumulative cultural evolution and negotiation between individuals. (iii) The Neolithic revolution, which involved the shift to agricultural and sedentary populations with hierarchical social organization. (iv)

Rafiqi, Matteen, et al. Origin and Elaboration of a Major Evolutionary Transition in Individuality. Nature. 585/239, 2020. As the abstract cites, McGill University, Montreal and Bezmialem Vakif University, Istanbul biologists discuss how the latest detailed studies of morphogenetic forms and processes are revealing the innate, persistent ways that a natural genesis proceeds toward further scalar levels of organismic complexities. An elaborate graphic display depicts a course for bacterial symbiotic integration.

Obligate endosymbiosis, in which distantly related species integrate to form a single replicating individual, represents a major evolutionary transition in individuality. Although such transitions are thought to increase biological complexity, the evolutionary and developmental steps that lead to integration remain poorly understood. Here, we show that obligate endosymbiosis between the bacteria Blochmannia and the hyperdiverse ant tribe Camponotini originated and elaborated through radical alterations in embryonic development, as compared to other insects. By this example and others, we find that the convergence of pre-existing molecular capacities and ecological interactions—as well as the rewiring of highly conserved gene networks—may be a general feature that facilitates the origin and elaboration of major transitions in individuality. (Abstract excerpts)

We therefore propose that other major transitions in individuality may originate and also elaborate through the rewiring of highly conserved gene regulatory networks, as well as by exploiting pre-existing molecular or developmental capacities and ecological interactions. (243)

Previous   1 | 2 | 3 | 4 | 5  Next