(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

VI. Earth Life Emergence: Development of Body, Brain, Selves and Societies

E. An Enhanced Autonomous Individuality

Hamilton, Andrew, et al. Social Insects and the Individuality Thesis: Cohesion and the Colony as a Selectable Individual. Gadau, Jurgen and Jennifer Fewell, eds. Organization of Insect Societies: From Genome to Sociocomplexity. Cambridge: Harvard University Press, 2009. After surveying prior pros and cons about species as superorganisms, a strong claim is made that eusocial insect groups should be considered as true individuals at a “higher” evolutionary scale. See also the ASU conference above.

The individuality thesis says that complex or higher-level biological objects are individuals, rather than that they are like organisms. While the individuality thesis was originally articulated to address a set of issue around the reality and nature of species, we argue that it applies well to colonies and that it frames an important set of questions about colony-level multiplication, variation, and heredity, thus throwing light on the colony as a unit of selection. (573)

Hanschen, Erik, et al. Individuality and the Major Evolutionary Transitions. Gissis, Snait, et al, eds. Landscapes of Collectivity in the Life Sciences. Cambridge: MIT Press, 2018. University of Arizona biologists including Richard Michod (search) finesse this popular nested scale by noting that each subsequent whole phase results in an enhanced personal liberty in community. For our review, it is evident that nature seems bent on forming such cooperative collectives at each and every stage. One might propose METI, major evolutionary transitions in individuality, by which to represent life’s quickening gestation. The whole volume is reviewed in Anthropo Opus as a consummate contribution.

The hierarchy of life is the central landscape of collectivity in the living world-eusocial societies composed of multicellular organisms, multicellular organisms composed of single (eukaryotic or prokaryotic) cells, single (eukaryotic) cells composed of (prokaryotic) cells, cells composed of gene networks, and gene networks composed of replicating genes. The theory of evolutionary transitions addresses how cooperative collectives evolve into new units of evolution, that is, new kinds of evolutionary individuals. In this chapter, we briefly review the major transitions in evolution (MTE) framework as originally formulated (John) Maynard Smith and (Eors) Szathmary, recent revisions to this framework, and the fitness-focused framework, evolutionary transitions in individuality (ETl). (Abstract)

Heras-Escribano, Manuel and Paulo de Jesus. Biosemiotics, the Extended Synthesis, and Ecological Information: Making Sense of the Organism-Environment Relation at the Cognitive Level. Biosemiotics. Online May, 2018. University of the Basque Country and Goldsmith University London philosophers seek to expand the extended evolutionary synthesis initiative by adding an emphasis on bioinformation and communicative code qualities, along with appreciations of enactive and ecological psychology views of creaturely and human personal agency. See also Thinking through Enactive Agency: Sense-Making, Bio-Semiosis and the Ontologies of Organismic Worlds by P. de Jesus in Phenomenology and the Cognitive Sciences (Online March 2018) and Interrelationship between Fractal Ornament and Multilevel Selection Theory by Olena Dobrovolska in the above journal (search).

This paper argues that the Extended Synthesis, ecological information, and biosemiotics are complementary approaches whose engagement will help us explain the organism-environment interaction at the cognitive level. The Extended Synthesis, through niche construction theory, can explain the organism-environment interaction at an evolutionary level because niche construction is a process guided by information. We believe that the best account that defines information at this level is the one offered by biosemiotics and, within all kinds of biosemiotic information available. This entanglement of biosemiotics, ecological information and the Extended Synthesis is promising for understanding the multidimensional character of the organism-environment reciprocity as well as the relation between evolution, cognition, and meaning. (Abstract)

Herron, Matthew, et al. Cellular Differentiation and Individuality in the ‘Minor” Multicellular Taxa. Biological Reviews. Online March, 2013. The Keywords for this article are “cellular differentiation, individuality, life history, major transitions, multicellularity, organisms, symbiosis.” University of Arizona behavioral biologists, in consultation with Richard Michod, Aurora Nedelcu and other UA researchers, emphasize the importance of “evolutionary transitions in individuality” as a prime feature of life’s episodic emergence. “Someone is in gestation” wrote Pierre Teilhard in the 1940s (CE, 184) by way of a sequential tandem of organic complexity and personified consciousness. In a new century, contributions such as this article confirm that life indeed evolves on a path of liberating individuation, as if a self-making genesis universe intent on bearing forth EarthKinder children.

Biology needs a concept of individuality in order to distinguish organisms from parts of organisms and from groups of organisms, to count individuals and compare traits across taxa, and to distinguish growth from reproduction. Most of the proposed criteria for individuality were designed for ‘unitary’ or ‘paradigm’ organisms: contiguous, functionally and physiologically integrated, obligately sexually reproducing multicellular organisms with a germ line sequestered early in development. However, the vast majority of the diversity of life on Earth does not conform to all of these criteria. We consider the issue of individuality in the ‘minor’ multicellular taxa, which collectively span a large portion of the eukaryotic tree of life, reviewing their general features and focusing on a model species for each group. When the criteria designed for unitary organisms are applied to other groups, they often give conflicting answers or no answer at all to the question of whether or not a given unit is an individual.

Complex life cycles, intimate bacterial symbioses, aggregative development, and strange genetic features complicate the picture. The great age of some of the groups considered shows that ‘intermediate’ forms, those with some but not all of the traits traditionally associated with individuality, cannot reasonably be considered ephemeral or assumed transitional. We discuss a handful of recent attempts to reconcile the many proposed criteria for individuality and to provide criteria that can be applied across all the domains of life. Finally, we argue that individuality should be defined without reference to any particular taxon and that understanding the emergence of new kinds of individuals requires recognizing individuality as a matter of degree. (Abstract)

Hoffmeyer, Jesper. Code-Duality and the Epistemic Cut. Jerry Chandler and Gertrudis Van de Vijver, eds. Closure: Emergent Organizations and Their Dynamics. Annals of the New York Academy of Sciences, 2000. The Dutch philosopher of semiotics describes a textual universe whose development is engaged in a “natural individuation,” which is seen to proceed as its “selfication process.”

Hoffmeyer, Jesper. Semiotics of Nature. Cobley, Paul, ed. The Routledge Companion to Semiotics. London: Routledge, 2010. A chapter on a “semiotization of nature” which seeks to impress just how much matter and life are ultimately composed as literacies of sign and signification. In an evolutionary retrospect such a capacity is seen to emerge and ramify as it progressively liberates a communicative individual unto ones own self.

The emergence of this individualization of semiotic freedom initiated a fundamental change in the dynamics of the evolutionary process. Patterns of interactive behavior now became increasing regulated or released by semiotic means, and this induced a new kind of flexibility upon inter- and intraspecific interactions. Innovations more and more would depend on semiotically organized cooperative patterns at all levels from single cells and tissues to organisms and species and, in the end, whole ecological settings. (35)

Jablonka, Eva. Inheritance Systems and the Evolution of New Levels of Individuality. Journal of Theoretical Biology. 170/301, 1994. An early appreciation of the nested stages of emergent individuation due to “epigenetic inheritance systems.”

Kelso, J. A. Scott. On the Self-Organizing Origins of Agency. Trends in Cognitive Science. Online May, 2016. The Florida Atlantic University, Center for Complex Systems and Brain Sciences veteran theorist and author (search) makes the point that the vital vector of cerebral and natural dynamic processes that he and colleagues have illumed over two decades seems to be most of all a source of personal empowerment.

The question of agency and directedness in living systems has puzzled philosophers and scientists for centuries. What principles and mechanisms underlie the emergence of agency? Analysis and dynamical modeling of experiments on human infants suggest that the birth of agency is due to a eureka-like, pattern-forming phase transition in which the infant suddenly realizes it can make things happen in the world. The main mechanism involves positive feedback: when the baby's initially spontaneous movements cause the world to change, their perceived consequences have a sudden and sustained amplifying effect on the baby's further actions. The baby discovers itself as a causal agent. (Abstract).

In short, it does not seem too far of a stretch of the imagination to propose that evolutionarily constrained processes of self-organization (real organisms coupled to real environments living in the metastable regime of their coordination dynamics) are at the origins of (meaningful) information and agency itself. (8)

Krakauer, David, et al. The Information Theory of Individuality. arXiv:1412.2447. MPI Mathematics in the Sciences, and Santa Fe Institute, theorists post a technical exercise which seeks to define personal entities by way of their relative information access, content, and processing. Akin to quantum and consciousness studies we add, there seem deep, inherent parallels between our regnant persona and one’s degree of effective knowledge.

We consider biological individuality in terms of information theoretic and graphical principles. Our purpose is to extract through an algorithmic decomposition system-environment boundaries supporting individuality. We infer or detect evolved individuals rather than assume that they exist. Given a set of consistent measurements over time, we discover a coarse-grained or quantized description on a system, inducing partitions (which can be nested). Legitimate individual partitions will propagate information from the past into the future, whereas spurious aggregations will not. Individuals are therefore defined in terms of ongoing, bounded information processing units rather than lists of static features or conventional replication-based definitions which tend to fail in the case of cultural change. One virtue of this approach is that it could expand the scope of what we consider adaptive or biological phenomena, particularly in the microscopic and macroscopic regimes of molecular and social phenomena. (Abstract)

Lidgard, Scott and Lynn Nyhart, eds. Biological Individuality: Integrating Scientific, Philosophical, and Historical Perspectives. Chicago: University of Chicago Press, 2017. The University of Chicago paleontologist, and University of Wisconsin historian of science, editors gather an array of chapters such as Metabolism, Autonomy, and Individuality by Hannah Landecker, Biological Individuality: A Relational Reading by Scott Gilbert, and Spencer’s Evolutionary Entanglement by Snait Gissis which survey historic and current notices of life’s seemingly insistent tendency to form personal entities, broadly conceived.

Bringing together biologists, historians, and philosophers, this book provides a multifaceted exploration of biological individuality that identifies leading and less familiar perceptions of individuality both past and present, what they are good for, and in what contexts. Biological practice and theory recognize individuals at myriad levels of organization, from genes to organisms to symbiotic systems. We depend on these notions of individuality to address theoretical questions about multilevel natural selection and Darwinian fitness; to illuminate empirical questions about development, function, and ecology; to ground philosophical questions about the nature of organisms and causation; and to probe historical and cultural circumstances that resonate with parallel questions about the nature of society.

Mathews, Freya. The Ecological Self. London: Routledge, 1991. An innovative work by the environmental philosopher, noted more in The Genesis Vision, which articulates a similar personal, planetary and cosmic course of individuation.

McShea, Daniel. The Minor Transitions in Hierarchical Evolution and the Question of a Directional Bias. Journal of Evolutionary Biology. 14/3, 2001. Rather than a branching bush, the Duke University biologist finds an increase in organic complexity by wholes contained within wholes. Its graphical depiction takes on the generic form of a self-organizing system.

The history of life shows a clear trend in hierarchical organization, revealed by the successive emergence of organisms with ever greater numbers of levels of nestedness and greater development, or ‘individuation,’ of the highest level. (502)

Previous   1 | 2 | 3 | 4 | 5  Next