(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 31 through 45 of 118 found.


An Organic, Conducive, Habitable MultiUniVerse

Animate Cosmos > Information

Cuffaro, Michael and Samuel Fletcher. Physical Perspectives on Computation, Computational Perspectives on Physics. Cambridge: Cambridge University Press, 2018. As the title implies, this wide-ranging, authoritative collection covers the on-going cross-synthesis of physical, condensed matter, and quantum phenomena with an algorithmic-informational basis. As this fertile merger proceeds, an epic revolution appears to be coming to fruition in our collaborative, worldwide midst. To wit, it may be possible to at last aver, as long intimated, that this cosmic and Earthly existence is distinguished by a double, generative dimension. Typical chapters are Ontic Pancomputationalism by Gualtiero Piccinini and Neal Anderson, On Characterizing Physical Evolution as Information Processing by Owen Maroney and Christopher Timpson, and The Natural Science of Computation by Dominic Horsman, et al. An Abstract for Quantum Theory as a Principle Theory by Adam Koberinski and Markus Mueller is appended next.

We give a condensed and accessible summary of a recent derivation of quantum theory from information-theoretic principles, and use it to study the consequences of this and other reconstructions for our conceptual understanding of the quantum world. Since these principles are to a large extent expressed in computational terminology, we argue that the hypothesis of "physics as computation", if suitably interpreted, attains surprising explanatory power. Similarly as Jeffrey Bub and others, we conclude that quantum theory should be understood as a "principle theory of information", and we regard this view as a partial interpretation of quantum theory. (AK & MM Abstract)

Animate Cosmos > Information

Floridi, Luciano. The Logic of Information: A Theory of Philosophy as Conceptual Design. Oxford: Oxford University Press, 2019. In this third work of his Information tetralogy after Philosophy (2013) and Ethics (2015), the Oxford University scholar (search) presses a constructivist view whence human beings, lately immersed in a global sensorium, seem made and meant to take up future material and organic cocreation. The informed content and consent of our cumulative knowledge store (library of cosmos) can be a resource for such intentional imaginations. (Floridi is also editor of the Springer journal Philosophy and Technology, whose June 2019 Homo faber issue (32/2) explores the subject.) What accrues is a lively naturalism with a computational source that advises the more we know and share, the more we can altogether achieve a better future.

Thanks to Alan Turing, the Baconian-Galilean project of grasping and manipulating the alphabet of the universe has begun to find its fulfillment in the computational and informational revolution, which is affecting so profoundly our knowledge of reality and how we conceptualize it and ourselves within it. From this perspective, the philosophy of information can be presented as the study of the informational activities that make possible the construction, conceptualization and finally the moral stewardship of reality, both natural and artificial, both physical and anthropological. The philosophy of information enables humanity to give meaning to and make sense of the world and construct it responsibly. (213)

Animate Cosmos > Intelligence

The Science of Consciousness. www.tsc2019-interlaken.ch. This is the main international meeting all about the presence of aware knowing perception in ourselves, and as now seems apparent, must suffuse a quantum evolutionary cosmology. Its venue is Interlaken, Switzerland in June 25-28, 2019. This home site has links to an extensive program and a Book of Abstracts. See also a Models of Consciousness meeting to be held at the Mathematical Institute of Oxford University on September 9-12, 2019. Its scientific scope is broad enough as to draw a luminous array of speakers from such as Roger Penrose, David Chalmers, Eva Jablonka, William Seager, Olaf Sporns, and Christopher Fuchs.

The Science of Consciousness (TSC) 2019 is the 26th international interdisciplinary conference on fundamental questions and cutting-edge issues connected with conscious experience. TSC is the largest and longest-running interdisciplinary conference emphasizing conceptual, empirical, cultural and even artistic approaches to the study of consciousness. Held annually since 1994, the TSC conferences alternate between Tucson, Arizona, and various locations around the world. TSC 2019 will include themes such as connectomics, placebo research, first-person experience, anesthetics, psychedelics, plant cognition, quantum biology, phantom limbs, dual-aspect monism, bistable perception, insight, religious studies, evolution, language, embodiment, time consciousness, critical neuroscience, micro-phenomenology and more.

Animate Cosmos > Intelligence

Kleiner, Johannes. Models of Consciousness. arXiv:1907.03223. A Leibniz University of Hannover postdoc mathematical physicist provides a latest survey which builds on the work of David Chalmers and Thomas Nagel so as to course through integrated information theory, global workspace models, conscious agent networks, and more.

The study of consciousness has emerged as a response to novel developments in neuroscience, cognitive psychology and analytic philosophy. Its aim is to develop a scientific account, formulated by way of mathematical laws or regularities, of how conscious experience relates to the physical domain. Even though models of consciousness have been proposed in the literature, details of the underlying conceptual terminology and framework remain poorly understood. This paper proposes a scientific study of consciousness based on concise definitions along with several examples. (Abstract excerpt)

Animate Cosmos > Thermodynamics

Zenil, Hector, et al. The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy. Entropy. 21/6, 2019. This paper by the Karolinska Institute, Stockholm computational theorists HZ, Narsis Kiani and Jesper Tegner is noted by the voluminous online journal site as among its most popular, because readers (like me) sense the authors are indeed closing on brilliant insights, however couched in technicalities, as the Abstract conveys. Something is really going on by itself as we ever try to get a good read and bead upon it, which may well be our cosmic purpose.

The principle of maximum entropy (Maxent) is often used to obtain prior probability distributions as a method to obtain a Gibbs measure under some restriction giving the probability that a system will be in a certain state compared to the rest of the elements. Here we take advantage of a causal algorithmic calculus to derive a thermodynamic-like result based on how difficult it is to reprogram a computer code. Using the distinction between computable and algorithmic randomness, we quantify the cost in information loss associated with reprogramming. To illustrate this, we apply the algorithmic refinement to Maxent on graphs and introduce a generalized Maximal Algorithmic Randomness Preferential Attachment (MARPA) Algorithm. Our study motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogrammability, and computation. (Abstract excerpt)

Animate Cosmos > Fractal

Nottale, Laurent. The Relativity of All Things: Beyond Spacetime. Nashville, TN: Persistent Press, 2019. This is an English edition of a French science bestseller by a former French National Center for Scientific Research director. What is relativity. The word evokes thoughts of Einstein. What ultimately matters is the relationship between two objects, not their absolute properties. (xiii) Nottale’s studies go back to the 1980s, while this latest text braces a similar conclusion being availed via network complexity across many fields. The relational interactivity between particles, components, and entities, are equally real and altogether compose a creative ecosmos . One could cite Lee Smolin, Carlo Rovelli and many others who emphasize this universal quality. A prescient endorsement was made by Murray Gell-Mann in 1992 (search) that independent laws and principles do actually exist as they display into a fractally self-similar vitality. An example of a working usage of Nottale’s theories is Derivation of a Generalized Schrödinger Equation from the Theory of Scale Relativity by Pierre-Henri Chavanis at arXiv:1612.02323.

The statement of the existence of laws, universal by nature, is sufficient in itself. It is the logic of the world’s organization that requires it. Said otherwise, the principle of relativity is reduced to the basic postulate upon which science is founded: There exist laws of nature. (72)

Einstein himself explicitly considered that a realistic approach to the quantum problem could go through the introduction of non-differentiability in physics. In 1948, he wrote in a letter to Wolfgang Pauli: “Maybe someone will find out another possibility, provided he searches with enough perseverance.'” Laurent Nottale is very precisely this 'someone'! Read and study this wonderful theory, and its major experimental implications, which are fundamental for the future of science, and for philosophy. Charles Alunni, Director, Philosophy of Science, École Normale Supérieure

Animate Cosmos > exoearths

Adams, Fred C. Pairwise Tidal Equilibrium States and the Architecture of Extrasolar Planetary Systems. arXiv:1907.00915. We cite this latest entry by the University of Michigan astrophysicist as example of how exoplanet studies have advanced to the point whence myriad dynamic solar-planetary arrays can be seen to exhibit intrinsic geometric patternings.

Current observations indicate that the planet formation process often produces multiple planet systems with nearly circular orbits, regular spacing, and a narrow range of inclination angles. Motivated by these observations, this paper determines the tidal equilibrium states for this class of extrasolar planetary systems. The basic conjecture is that the planet formation process will act to distribute planetary masses in order to achieve a minimum energy state. The resulting minimum energy configuration - subject to the constraint of constant angular momentum - corresponds to circular orbits confined to a plane. We then generalize the treatment to include multiple planet systems, where each adjacent pair of planets attains its (local) tidal equilibrium state. (Abstract excerpt)

Animate Cosmos > exoearths

Kaltenegger, Lisa, et al. TESS Habitable Zone Star Catalog. Astrophysical Journal Letters. 874/1, 2019. (TESS = Transiting Exoplanet Survey Satellite). We cite this report by Cornell, Lehigh, and Vanderbilt University researchers as an example of an initial EarthKinder cosmic census going forward.

Animate Cosmos > exoearths

Shahar, Anat, et al, Anat, et al. What Makes a Planet Habitable. Science. 364/434, 2019. Carnegie Institute of Washington geochemists add another requirement for life’s long-term viability. Suitable internal core conditions are a vital factor within the overall conduciveness for living systems to appear and evolve.

The Milky Way Galaxy teems with planetary systems, most of which are unlike our own. It is tempting to assume that life can only originate on a planet that is similar to Earth, but different planets able to sustain Earth-like features could be important for habitability studies. To aud the search for extraterrestrial life, scientists must assess which features of Earth are essential to the development and sustenance of life for billions of years and whether the formation of such planets is common. External effects such as stellar variability and orbital stability affect habitability, but internal processes that sustain a clement surface are also vital. A combination of observations, experiments, and modeling of planetary interiors can guide the search for extraterrestrial life. (Summary)

Animate Cosmos > exoearths

Zeng, Li, et al. Growth Model Interpretation of Planet Size Distribution. Proceedings of the National Academy of Sciences. 116/9723, 2019. A 16 member team based at Harvard including Dimitar Sasselov provide a good example of how later 2010s exoplanet studies, now an intense global activity (search Astro2020), have begun to identify topological features across an array from rocky asteroids to gas giants. As the Abstract alludes, it is noted again how chancy and rare the presence of just the right size and location might be so to hold a benign atmosphere without becoming all dry or wet. A concurrent entry As Planetary Discoveries Pile Up, a Gap Appears in the Pattern by Rebecca Boyle in Quanta Magazine (May 16, 2019) which links to a similar Astrophysical Journal paper.

The radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. However, an important question about the composition of planets ranging from 2 to 4 Earth radii (R⊕) still remains. They may either have a rocky core enveloped in a H2–He gaseous envelope (gas dwarfs) or contain a significant amount of multicomponent, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10–15 M⊕, if half-ice and half-rock by mass, have radii of 2.5 R⊕, which exactly match the second peak of the exoplanet radius bimodal distribution. (Abstract excerpt)

Cosmomics: A Genomic Source Code in Procreative Effect

Cosmic Code

Krakauer, David, ed. Worlds Hidden in Plain Sight: The Evolving Idea of Complexity at the Santa Fe Institute 1984 – 2019. Santa Fe, NM: Santa Fe Institute Press, 2019. The SFI evolutionary biologist and current president gathers 35 years of contributions from events, seminars, projects, talks, and more which can well track the revolutionary discovery of a natural anatomy, physiology, cerebral, and cultural essence. A 1984 - 1999 section notes Mavericks such as John Holland, Murray Gell-Mann, and Simon Levin. 2000 - 2014 turns to Unifers like Harold Morowitz, Jessica Flack and Brian Arthur. 2015 and Beyond then completes 37 chapters with entries by Luis Bettencourt, Geoffrey West, Mirta Galesic, Simon DeDeo, Samuel Bowles, and Jennifer Dunne.

The book opens with a yearly topical list from initial glimpses of a nonlinear physics across astral and material systems all the way to active societies and economies. 2019 titles are Humans in Ecological Networks and Eco-Evolutionary Synthesis. A prime SFI founder George Cowan saw the promise of an iconic, common motif which similarly recurred everywhere. Three and a half decades later, as we try to document, a self-organizing complex adaptive network system of node element and link relation within a whole, viable entity seems to well fulfill this goal. I visited SFI in 1987 to hear a talk by Morowitz, when one sensed that a new animate frontier was opening. We cite a prescient 1992 affirmation by Murray Gell-Mann, another founder, along with a 2015 verification by David Krakauer.

Ultimately, we can argue that it is the self-similarity of the structure of fundamental physical law that dictates the continuing usefulness of mathematics. At the modest level of earlier science, this sort of self-similarity is strikingly apparent. Electricity, gravitation, and magnetism all have the same force, and Newton suggested that there might be some short-range force. Now that scientists are paying attention to scaling phenomena, we see in the study of complex systems astonishing power laws extending over many orders of magnitude. The renormalization group turns out to apply not only to condensed matter but to numerous other subjects. The biological and social sciences are just as much involved in these discoveries of scaling behavior as the physical sciences. We are always dealing with nature consonant and conformable to herself. So the approximate self-similarity of the laws of nature runs the gamut from underlying laws of physics to the phenomenological laws of the most complex realms. (Murray Gell-Mann, 1992, 38-39)

For the last few decades we have been steadily surveying the landscape of complex phenomena, and it is gratify that along the way we find that complex systems nominally unrelated bear strong family resemblances. These similarities include how the structure of evolutionary adaption looks a lot like the mathematics of learning, that the distribution of energy within a body made of tissues and fluids follows rules similar to those governing the flow of energy in a society, that networks within cells adhere to the geometric principles we find on the internet, and that the rise and fall of ancient civilizations follow a sequence similar to the present growth of urban centers. (David Krakauer, 2015, 230)

Cosmic Code

Moore, Douglas, et al. Cancer as a Disorder of Patterning Information: Computational and Biophysical Perspectives. Convergent Science Physical Oncology. 3/043001, 2017. DM and Michael Levin, Tufts University and Sara Walker, Arizona State University, who represent a new generation of complexity scientists, contribute a 30 page, 478 reference posting of the 2010s turn to factor in a mathematical presence of multiplex network phenomena. By this advance, previously identified cellular elements gain the missing dimension of their fluid interactive linkage. Their compass includes integrated information theory from neural studies as another way that agents form spatiotemporal patterns. See also in this journal The Physics of Life: Clinical, Biological and Physical Science Approaches for Cancer Research by Katharine Arney (4/040201, 2018), second quote. In the broader scheme of an ecosmos genesis, we might witness life’s long evolution as a self-healing, curing and now preventative process by virtue of such an emergent knowledge corpus which, in its genomic essence, can be fed back to heal, cure the beings it arose from.

The current paradigm views cancer as a clonally degradation of genetic information in single cells. A novel perspective is that cancer is due to a system disorder of algorithms that normally guide individual cell activities toward anatomical features and away from tumorigenesis. A view of cancer as a disease of geometry can focus on pathways that allow cells to cooperate, form and maintain large-scale patterning. Cancer may result when cells lose coherent structures and their computational selves reverts to a single-cell, self-serving stage. Here, we highlight two recent areas of theoretical advance. First, we review the roles that endogenous bioelectrical networks across many tissues in vivo foster information processing in tumor suppression, progression, and reprogramming. Second, we provide a primer to the development of computational methods for quantifying causal control structures in cancer and other complex biological systems. Finally, specific ways in which a synthesis of novel integrative biophysics and mathematical analysis may better understand and address cancer are stated. (Abstract edits)

Bringing together the physical and biological sciences will ultimately lead to new frameworks for understanding cancer as a complex adaptive system with measurable and predictable physical characteristics. And from this standpoint we can hope to develop better diagnostic and monitoring techniques to spot cancer early, track it as it grows, changes and spreads, and apply this knowledge to treat it more effectively. (Arney, 4)

Cosmic Code

Virgo, Nathaniel. The Necessity of Extended Autopoiesis. Adaptive Behavior. Online April 16, 2019. Amongst an ongoing discussion of how living organisms continue to vitalize and compose themselves, an Earth-Life Science Institute, Tokyo research professor defends a wider view, which the Abstract notes, which expands beyond just a bodily locus. The target article for this commentary is Are Living Beings Extended Autopoietic Systems? by Mario Villalobos and Pablo Razeto-Barry (online January).

The theory of autopoiesis holds that an organism can be defined as a network of processes. However, an organism also has a physical body. The relationship between these two things—network and body—has been raised in this issue of Adaptive Behaviour, with reference to an extended interpretation of autopoiesis. This perspective holds that the network and the body are distinct things, and that the network should be thought of as extending beyond the boundaries of the body. The relationship between body and network is subtle, and I revisit it here from the extended perspective. I conclude that from an organism = network perspective, the body is a biological solution to the problem of maintaining both the distinctness of an organism, separate from but engaged with its environment and other organisms, and its distinctiveness as a particular individual. (Abstract)

Cosmic Code > Algorithms

Aerts, Diederik, et al. Quantum Entanglement in Physical and Cognitive Systems. arXiv:1903.09103. A seven person team based at Brussels Free University with other postings in Switzerland, the UK and Chile enter their latest work-in-progress toward a theoretical and conceptual, quantum and classical, physical and biological, cosmic integrative whole. Into mid 2019, per the second quote, as new understandings join quantum and human phenomena, we can begin to glimpse a universal Copernican revolution. Physics and people are at last reunited, which in turn implies a lively, literate ecosmos. On this eprint site, over a hundred papers by D. Aerts, this group, and many colleagues can be accessed going back to 2008. An example is The Emergence and Evolution of Integrated Worldviews by DA with Liane Gabora at 1001.1399. Another current posting is Quantum-Theoretic Modeling in Computer Science at 1901.04299 and Quantum Entanglement in Corpuses of Documents 1810.12114.

We provide a general description of the phenomenon of entanglement in bipartite systems, as it manifests in micro and macro physical systems, as well as in human cognitive processes. We do so by observing that when genuine coincidence measurements are considered, the violation of the 'marginal laws', in addition to the Bell-CHSH inequality, is also to be expected. The situation can be described in the quantum formalism by considering the presence of entanglement not only at the level of the states, but also at the level of the measurements. (Abstract excerpt)

But nowadays the predictions of quantum theory are no longer put into question, not only as regards entanglement, which has been shown to be preservable over distances of a thousand kilometers, but also with respect to many other effects such the delocalization of large organic molecules. On the other hand, the debate about the profound meaning of the theory never stopped, and in fact has constantly renewed and expanded over the years, so much so that one can envisage this will produce in the end a Copernican-like revolution in the way we understand the nature of our physical reality. Such a debate, however, is not confined to physicists or philosophers of science, but also reached new fields of investigation, in particular that of psychology, due to the development of that research domain called ‘quantum cognition.’ (2)

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated, interact, or share spatial proximity in ways such that the quantum state of each particle cannot be described independently of the state of the others, even when the particles are separated by a large distance.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden variable theories. Experimental verification of violation of the inequalities is seen as experimental confirmation that nature cannot be described by local hidden variables theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in 1969.

Cosmic Code > Algorithms

Beltran, Lester and Suzette Geriente. Quantum Entanglement in Corpuses of Documents. arXiv:1810.12114. Brussels Free University, Interdisciplinary Studies Group researchers led by Diederik Aerts explore how recent clarifications and integrative expansions of quantum theory can reveal how such deep phenomena is actively present even in human literary writings. As if a library of cosmos (taking license), in addition to fractal network complexities, our textual linguistic corpora is found to possess a physical affinity and generative source. And we note, by turns, this extant cosmos becomes graced by a natural narrative (more license). See also Quantum-Theoretic Modeling in Computer Science by these authors and group at 1901.04299 for a later finesse. A parallel effort goes on in Bob Coecke’s Oxford University group, such as The Mathematics of Text Structure at 1904.03478.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next