![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape1. Quantum Cosmology Theoretic Unity Erhard, Manuel, et al. Advances in High Dimensional Quantum Entanglement. 1911.10006. University of Vienna Center for Quantum Science polyphysicists ME, Mario Krenn and Anton Zeilinger (search) provide another avocation that physical studies are in the midst of a second, 21st century reinvention of what constitutes this fundamental realm. In addition to radical reconceptions akin to other natural and social stages, as if opening a new frontier these foundational abilities will lead to all sorts of novel utilizations. The article’s 217 references are a good resource going forward. Since its discovery in the last century, quantum entanglement has challenged some of our most cherished classical views, such as locality and reality. Today, the second quantum revolution is in full swing and promises to revolutionize areas such as computation, communication, and imaging. Here, we review conceptual and experimental advances in complex entangled systems involving many multilevel quantum particles. We also show how academic curiosity and fundamental research has led to new technological applications such as a quantum internet or teleportation of all information stored in a quantum system. (Abstract excerpt) Ferris, Timothy. The Whole Shebang. New York: Simon & Schuster, 1997. A science writer takes a whirlwind tour of humankind’s encounter with an expanding galactic and cosmic evolution. Freedman, Wendy and Michael Turner. Measuring and Understanding the Universe. Reviews of Modern Physics. 75/4, 2003. Cosmology is in the midst of a grand convergence and verification of theory, instrumentation and experiment. In the last two decades, a set of interesting ideas based upon unexpected connections between the quarks and the cosmos and the emergence of a new generation of observations and experiements have transformed cosmology into a ful-fledged precision science…. There is no doubt that we are in the midst of a revolutionary period of discovery in cosmology. (1446) Frenk, C., et al, eds. The Search for Dark Matter and Dark Energy in the Universe. Philosophical Transactions of the Royal Society of London A. 361/2423-2627, 2003. Papers from a January 2003 discussion on the subject. Typical titles are “Large-Scale Structure and Matter in the Universe” by J. A. Peacock and “A Quintessential Introduction to Dark Energy” by Paul Steinhardt. Upon reflection, it is surely remarkable that a cognitive, sentient species on an infinitesimal bioplanet is yet able to calculate a “material and energy budget for the universe.”
Freundlich, Jonathan, et al.
Measures of luminous and dark matter in galaxies across time.
arXiv:2411.07605.
Dark matter is a pillar of the current standard model of structure formation. However, it can so far only be probed indirectly through its gravitational effects. In this focus meeting, we discussed methods to estimate galaxies' visible and dark matter masses in the nearby and distant Universe. We discussed how robust mass measurements can help plan, perform, and refine particle dark matter searches, along with warm, self-interacting, and fuzzy dark matter, and modified gravity. Finally, we discussed prospects and strategies that could be implemented to reveal the nature of this crucial component of the Universe. (Abstract) Fritzsch, Harald. The Fundamental Constants in Physics and Their Time Dependence. Progress in Particle and Nuclear Physics. 61/2, 2008. The University of Munich physicist wonders over the curious values of many, mostly mass related, parameters which can be seen to vary in some degree after the Big Bang. The quote is from the last paragraph and might sum up a cosmic ‘to be or not to be’ – if not accidental, does it mean ‘preset’ in some way with all that might imply? Some, but not all fundamental constants might simply be cosmic accidents. (341) Gates, Evalyn. Einstein’s Telescope: The Hunt for Dark Matter and Dark Energy in the Universe. New York: Norton, 2009. Among a spate of popular books about an accelerating cosmic science, this is a well-written volume by the assistant director of the Kavli Institute for Cosmological Physics at the University of Chicago. It is inspired by Albert’s 1936 conjecture that the way gravity bends space could be availed as a vast lens to delve celestial frontiers. For an apropos quote, we offer an Overview from the Kavli website. Cosmological discoveries over the past two decades …. have found that the Universe is a giant particle accelerator which enables particles to have energies that are 30 million times higher than those found in terrestrial accelerators. Another area where physics and astronomy are intertwined is in understanding "dark matter". The Universe contains large amounts of "dark matter" which scientists feel is made of a particle that is yet to be discovered. The origin of structure in the Universe such as galaxies and clusters of galaxies is believed to have happened through sub-atomic quantum fluctuations, whose ripples we see as tiny fluctuations in the temperature of cosmic microwave background across the sky. These and other discoveries show that physics at the smallest scale - interactions of the quarks and leptons - is intimately connected with the largest scale - the constitution and birth of the cosmos itself. Gates, James. Symbols of Power. Physics World. June, 2010. A renowned African-American physicist at the University of Maryland proposes that traditional geometric symbols known as “adinkras” might again serve to help illuminate nature’s creative informational qualities. Could it be that codes, in some deep and fundamental way, control the structure of our reality? In asking this question, we may be ending our “treasure hunt” in a place that was anticipated previously by at least one pioneering physicist: John Archibald Wheeler. (39) As for my own collaboration on adknkras, the path my colleagues and I have trod since the early 2000s has led me to conclude that codes play a previously unsuspected role in equations that possess the property of supersymmetry. This unsuspected connection suggests that these codes may be ubiquitous in nature, and could even be embedded in the essence of reality. (39) Gebrehiwot, Yikdem, et al. On Utmost Multiplicity of Hierarchical Stellar Systems. arXiv:1701.01135. We cite for its content, and for the current reach of intercontinental collaborations. The lead author is at the Entoto Observatory, Ethiopia, followed by seven Russian astronomers with other postings in South Africa. The paper is to appear in the journal Baltic Astronomy from Vilnius, Lithuania. According to theoretical considerations, multiplicity of hierarchical stellar systems can reach, depending on masses and orbital parameters, several hundred, while observational data confirm existence of at most septuple (seven-component) systems. In this study, we cross-match very high multiplicity (six and more components) stellar systems in modern catalogues of visual double and multiple stars, to find candidates to hierarchical systems among them. After cross-matching with catalogues of closer binaries (eclipsing, spectroscopic, etc.), some of their components were found to be binary/multiple themselves, which increases the system's degree of multiplicity. Optical pairs, known from literature or filtered by the authors, are flagged and excluded from the statistics. We have compiled a list of potentially very high multiplicity hierarchical systems that contains 10~objects. Their multiplicity does not exceed 12, and we discuss a number of ways to explain the lack of extremely high multiplicity systems. Gibbons, G. W., et al, eds. The Future of Theoretical Physics. Cambridge: Cambridge University Press, 2003. A stellar constellation of articles in honor of Stephen Hawking’s 60th birthday. Many leading cosmologists such as Martin Rees, Alan Guth and Andrei Linde contribute their latest imaginings on the dynamic nature, shape and fate of space-time and our human ability to comprehend such vistas.
Gielen, Steffen and Joao Magueijo.
Quantum Resolution of the Cosmological Singularity.
arXiv:2204.01771.
We cite this posting by University of Sheffield and Imperial College London physicists as one example of frontier Earthuman abilities to plumb and span, so it seems, any depth and breadth of the entire universal expanse, and beyond. Once again it is fantastic to contemplate that such “microcosmic” entities themselves, as they now altogether reside and collaborate within a global cerebral-sphere, can yet accomplish these quantifications across so many orders of magnitude. Might a reason be that planetary peoples are ultimately meant to become ecosmic cocreators? Giudice, Gian. A Zeptospace Odyssey. Oxford: Oxford University Press, 2009. A CERN physicist evokes the Large Hadron Collider as the ultimate microscope now able to peer into this “zeptometre” zone of a billionth of a billionth of a millimeter. Its supposed mission is to find some missing, crucial clue in a material haystack that would connect to and explain the multiverse. Or maybe the last hurrah of a left brain male hunt as it disappears into this black hole of a machine, oblivious to a radically developmental universe to human genesis. Or as Brian Josephson tries to say due to creative, self-organizing forces that will not be found in the LHC.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |