
III. Ecosmos: A Revolutionary Fertile, Habitable, SolarBioplanet, Incubator LifescapeE. Systems Cosmology: Fractal SpaceTimeMatter Cosmai, Leonardo, et al. Fractal Universe and Cosmic Acceleration in a LemaitreTolmonBondi Scenario. arXiv:1810.06318. When we began this section in the early 2000s, the presence of selfsimilar structures was suspected but their verification, still open to question, across many scales was just beginning. Here Italian astrophysicists including Luciano Pietronero and Francesco Labini (search each) can now affirm, some 90 years after Lemaitre and 4 centuries after Galileo, that an intrinsic mathematical geometry does indeed suffuse the celestial raiment. In this paper we attempt to answer the question: can cosmic acceleration of the Universe have a fractal solution? We give an exact solution of a LemaitreTolmanBondi (LTB) Universe based on the assumption that such a smooth metric is able to describe, on average, a fractal distribution of matter. While the LTB model has a center, we speculate that, when the fractal dimension is not very different from the space dimension, this metric applies to any point of the fractal structure when chosen as center so that there is not any special point or direction. We examine the observed magnituderedshift relation of type Ia supernovae, showing that the apparent acceleration of the cosmic expansion can be explained as a consequence of the fractal distribution of matter. (Abstract) Coutinho, Bruno, et al. The Network Behind the Cosmic Web. arXiv:1604.03236. A Bostonbased team of system and astro physicists including AlbertLaszlo Barabasi and Mark Vogelsberger provide a strongest statement to date of the presence across galactic reaches of the same scalefree topologies as everywhere else in nature and society. A longer technical version is posted as Discriminating Topology in Galaxy Distributions using Network Analysis at arXiv:1603.02285. And this reference is being logged in along with a paper by Semi Min and Juyong Park on Narrative Structures and Dynamics Using Networks (1604.03029) which notes that even literary classics exhibit these common qualities. In our midst, might a realization dawn of a “deep universality” from cosmos to culture, a truly textual nature? The concept of the cosmic web, viewing the Universe as a set of discrete galaxies held together by gravity, is deeply engrained in cosmology. Yet, little is known about the most effective construction and the characteristics of the underlying network. Here we explore seven network construction algorithms that use various galaxy properties, from their location, to their size and relative velocity, to assign a network to galaxy distributions provided by both simulations and observations. We find that a model relying only on spatial proximity offers the best correlations between the physical characteristics of the connected galaxies. We show that the properties of the networks generated from simulations and observations are identical, unveiling a deep universality of the cosmic web. (Abstract) Da Luz, Marcos and Celia Anteneodo. Nonlinear Dynamics in Meso and Nano Scales: Fundamental Aspects and Applications. Philosophical Transactions of the Royal Society A. 369/245, 2011. Universidade Federal do Paraná, Curitiba, Brazil, and PUCRio and National Institute of Science and Technology for Complex Systems, Rio de Janeiro physicists introduce a special issue on the latest insights upon a universal nature abundantly characterized by these selforganizing complexities. Topics range from “nonlinear semiclassic dynamics of open systems” and “quantum maps with decoherence” to copolymers, colloidal particles, and hydrodynamics. See especially “Fractal Structures in Nonlinear Plasma Physics” by R. L. Viana, et al, a global group from Brazil, Spain, and China. Once the very fundamental laws of nature are conceivably exactly the same for any process, why do we divide physics into great areas such as cosmology, statistical mechanics, condensed matter, atomic and molecular physics, high energy physics, etc.? The answer, to a large extent, relies on the type of methodology, concepts and principles adopted to explain and comprehend a particular phenomenon. In fact, the specific framework considered to treat a system is closely related to its resulting collective interactions and the amount and degree of organization of matter, which are the aspects setting the characteristic scales of energy, size and time. (245) De la Fuente Marcos, R. and C. Multifractal Evolution in Interacting Galaxies. Monthly Notices of the Royal Astronomical Society. 372/279, 2006. Suffolk University, Madrid campus, astronomers quantify the selfsimilar geometries that result via celestial confluences from supergiant clouds to stellar superclusters. Multifractality can be understood as superposition of different fractal patterns. (280) De Marzo, Giordani, et al. Zipf’s Law for Cosmic Structures. Astronomy & Astrophysics. 651/A114, 2021. The collegial authors, GDM, Francesco Sylos Labini and Luciano Pietronero, Centro Ricerche Enrico Fermi, Rome, have been pioneer researchers of galactic geometries since the early 2000s, as noted in this section. But back then, only initial, spurious inklings could be found. In the two decades since, an actual reality of an innate, harmonic lawfulness across the celestial parsecs has become robustly evident. By this latest posting, into the 2020s an independent, fractallike selfsimilarity is considered to take on a distinct textuallike quality. See also Dynamical Approach to Zipf’s Law by this group in Physical Review Research (3/013084, 2021) for a further descriptions, and applications to a far removed urban universe. The statistical characterization of the distribution of visible matter in the universe is a central problem in modern cosmology. In this respect, a crucial question concerns how large are the greatest structures in the universe. This point is related to whether or not such a distribution can be approximated as being homogeneous on large enough scales. Here we consider the size distribution of superclusters of galaxies and leverage the ZipfMandelbrot law to complement an analysis based on correlation functions. We find that galaxy superclusters are described by a pure Zipf's law which implies that the current catalogs are not large enough to spot a truncation in the powerlaw behavior. (Abstract excerpt) De Vega, H., et al. Fractal Structures and Scaling Laws in the Universe. Chaos, Solitons & Fractals. 10/23, 1999. More mathematical insights into nature’s iterative geometry. Fractal structures are observed in the universe in two very different ways. Firstly, in the gas forming the cold interstellar medium in scales from 104pc till 100pc. Secondly, the galaxy distribution has been observed to be fractal in scales up to hundreds of Mpc.” (329) (pc = parsecs = 3.26 light years). Demianski, Marek and Andrei Doroshkevich. Self Similarity of the Dark Matter Dominated Objects and the Shape of Small Scale Power Spectrum. arXiv:1701.03474. A latest posting by University of Warsaw and Lebedev Physical Institute of the Russian Academy of Sciences, senior astrophysicists contributes to global understandings of an iterative cosmic topology and emergence which seems trying to achieve selfrecognition through its worldwise human phenomenon. One of the important goals of cosmology is to establish correlations between the observed Universe – the CMB, Large Scale Structure (LSS), galaxies etc. – and the processes that occurred at the earlier epochs of evolution of the Universe and are encoded in the initial power spectrum of density perturbations. For larger scale D > 10Mpc this problem is approximately solved by the CMB observations of the WMAP missions and is realized as the standard ΛCDM model. However the shape of the power spectrum at small scale remains unknown and its investigation is one of the actual current problem of cosmology. Now it is unfortunately not possible to obtain reliable information about this very important issue. Next very interesting problem is the universality and the self similarity of the internal structure of DM dominated halos in a wide range of their masses and sizes. (1) Deppman, Airton. Fractal Structure of Hadrons: Experimental and Theoretical Signatures. Universe. Online August, 2017. It is ever amazing that we peoples can proceed altogether to plumb such physical depths and sidereal reaches. Here a University of Sao Paulo astrophysicist advises about an apparent intrinsic propensity of subatomic particles to form selfsimilar geometries. One then wonders as to where these mathematical lineaments came from, what other reality or persona might have put them there? See also Fractals, Nonextensive Statistics and Quantum Chromodynamics by Airton, Deppman, et al in Physical Review D (101/034019, 2020). One important ingredient in the study of cosmological evolution is the equation of state of the primordial matter formed in the first stages of the Universe. It is believed that the first matter produced was of hadronic nature, probably the quark–gluon plasma which has been studied in highenergy collisions. There are several experimental indications of selfsimilarity in hadronic systems—in particular in multiparticle production at high energies. Theoretically, this property was associated with the dynamics of particle production, but it is also possible to relate selfsimilarity to the hadron structure—in particular to a fractal structure of this system. In the present work, a review of the theoretical developments related to the thermodynamical properties of hadronic matter and its applications in other fields is presented. (Abstract) Doering, Andreas and Tim Palmer. New Geometric Concepts in the Foundations of Physics. Philosophical Transactions of the Royal Society A. 373/Issue 2047, 2015. The Universitat ErlangenNurnberg and Oxford University physicists edit papers from a November 2013 workshop with this title that while admitting LHC Higgs boson and other successes, many problems remain out of reach for current theories. Led by Palmer (search) it is proposed that a more structural, topological approach might help resolve disparate issues. While the meeting included leaders such as Roger Penrose and Gerard ‘t Hooft, the 14 male authors each seemed to have one piece of the puzzle, with few attempts at an integral unity or vision. For example, Xavier Calumet considered a potential energy dependence of Planck’s constant; Cruz Morales and Zilber reformulated quantum mechanics using model theory; Andreas Doering reviewed the topos version of quantum theory; Chris Fewster presents locally covariant quantum field theories; Lucien Hardy proposes quantum theory in terms of bold tensors; Andrew Hodges does twistor geometry; Michael Lapidus presents fractal strings and the Riemann zeta function; Roger Penrose discusses the ‘googly problem’ within twistor cohomology; and Gerard ‘t Hooft (search) presents his programme for a classical, deterministic, real universe underlying quantum systems. Einasto, Jaan, et al. On Fractal Properties of the Cosmic Web. arXiv:2002.02813. When scientific research began to shift to a worldwide collaboration in the early 2000s, this section could only document sparse inklings of reliable geometric patterns as they suffuse the celestial raiment. Here and now, Tartu Observatory, Estonia astrophysicists quantify in much mathematical detail their presence at every selfsimilar instance and scale. See also Evolution of Superclusters in the Cosmic Web by this group at 1901.09378. Johannes Kepler and Galileo Galilei would be gratified. Our natural philoSophia view may finally be encountering and verifying the vital, recursive structurations that are there on their intrinsic own.
El Naschie, Mohamed.
Fractal Black Holes and Information.
Chaos, Solitons and Fractals.
29/1,
2006.
The latest theories of the University of Alexandria, Egypt physicist that nature is deeply fractally selfsimilar in kind from quantum to celestial realms. El Naschie edits this highly technical monthly journal where many of his papers can be found. We are aware that he has been taken to task (2008) over this excess, and plans to resign, but feel this real natural recurrence merits expression.
Elbert, Oliver, et al.
Core Formation in Dwarf Haloes with SelfInteracting Dark Matter.
Monthly Notices of the Royal Astronomical Society.
453/1,
2015.
A team of astrophysicists from UC Irvine, SciTech Analytics, and Ohio State University, including James Bullock conceiver of the theory, explore implications of a novel view of this ambient materiality which serves to fill out the largescale cosmic structure. Since a static dark matter did not pass tests, Bullock wondered if it might interact with itself in a similar way as ponderable elements and chemicals, which has since gained credence. These inklings of an actively selfconstructing universe compose an August 2015 Quanta Magazine article The Case for Complex Dark Matter.
Previous 1  2  3  4  5  6  7  8  9  10 Next [More Pages]


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 