(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

I. Planatural Genesis: A Phenomenal, PhiloSophia, Propaedutic, WumanWise, Participatory Endeavor

C. Our Earthumanity Envisions an Animate, Self-Organizing, Encoded Procreativity

Hickey, Ravmond. Life and Language Beyond Earth.. Cambridge, UK: Cambridge University Press, 2022. An emeritus professor at the University of Duisburg and Essen, Germany and the University of Limerick, Ireland writes his comprehensive, up to date, survey of life’s evolutionary development both on our home bioworld and across analogous interstellar realms. The well researched and written text assumes that habitable planets will hold to a mainly similar Darwinian creaturely course as occurred on Earth. His especial emphasis is then a persistent appearance of communicative and language-like faculties for diverse social group viability. Visit the author’s website at raymondhickey.com for chapter abstracts and more. Here next is its full table of contents.

Part I. Introduction: 1. Approaching the topic; 2. Looking beyond Earth; 3. Striving to understand; Part II. The Universe We Live In: 4. Trying to grasp size; 5. Star formation and planets; 6. The likelihood of life; 7. Possible conditions on an exoplanet?; 8. How and where to look for exolife; 9. The limits of exploration; 10. Assessing probabilities; Part III. Our Story on Earth: 11. The slow path of evolution; 12. How does the whole work?; 13. The road to Homo sapiens; 14. The rise of human societies; Part IV. The Runaway Brain: 15. The brain-to-body ratio; 16. How brains develop; 17. Our cognition; 18. Consciousness; 19. Artificial intelligence; Part V. Language, our Greatest Gift: 20. Looking at language; 21. Talking about language; 22. The view from linguistics; 23. The language faculty and languages; 24. Language and the brain; 25. Acquiring language; 26. Humans and animals; Part VI. Life and Language, Here and Beyond: 27. Preconditions for life; 28. What might exolife be like?; 29. Looking for signs of life; 30. The issue of first contact; 31. Language beyond Earth; 32. How human language arose; 33. The language of exobeings; 34. Looking forward.

Hidalgo, Carlos, editor-in-chief.. EPS Grand Challenges: Physics for Society in the Horizon 2050.. Europe: IOP Science., 2024. The European Physics Society publishes a series of leading edge volumes as this, Google terms. This is an 800 page edition with over 100 senior authors such as Sara Seager, Jurgen Kurths, Frances Westall, Jacob Biamonte, Marc Barthelemy and Thiery Mora. Its relevance is evident by two main parts: Physics as global human enterprise for understanding Nature and Physics developments to tackling major issues affecting the lives of citizens. While a collection of disparate subjects, altogether as it looks ahead, one gets a sense of current advances and adventures by way of myriad planetary collaborations.

There are many images of science and of scientists. Some would imply that science will eventually reach the limits of knowledge while others create an expectation of endless horizons. In this book, we will look at all these aspects, going from particles, to atoms, cells, organisms, stars, galaxies and our own place in the universe. We explore what makes us, human beings, unique by an ability to imagine and shape the future through the scientific method. The book is an EPS action designed to address the social dimension of science and the grand challenges in physics so to benefit developed societies, raise standards of living at the global scale, and provide basic understanding of nature on the 2050 horizon.

Physics bridging the infinities. Chapter 2 presents an introduction and sections on: particle physics: physics beyond the Standard Model; the origin of visible matter; quantum gravity—an unfinished revolution; what is the Universe made of? Searching for dark energy/matter; a gravitational universe: black holes and gravitation waves; stars, the Sun, and planetary systems as physics laboratories; physics of the Earth's interior.

Physics for understanding life. Chapter 4 presents an introduction and sections on: searching for life in the Universe: our place in the Universe; artificial intelligence: powering the fourth industrial revolution; artificial life: sustainable self-replicating systems; toward a quantitative understanding of life; the emergence of life: the Sun–Earth connection.

Physics for secure and efficient societies. Chapter 7 presents an introduction and sections on: second quantum revolution: quantum computing and cybersecurity; sensors and their applications; the space sector: current and future prospects; large-scale complex sociotechnical systems and their interactions.

Holford, Mande and Benjamin Normark. Integrating the Life Sciences to Jumpstart the Next Decade of Discover. Integrative & Comparative Biology. 61/6, 2021. Hunter College and UM Amherst biologists introduce this special edition of 29 papers which relate to the new National Science Foundation Big Ideas initiative: Understanding the Rules of Life. As we note, this 2020s span (along with its trauma and tragedy) seems to be a singular moment when many scientific fields from quantum and evolutionary to societal and cosmic have reached an epic phase of convergent synthesis. A strong, steady theme can then be seen to course through these entries. Living systems, in both their Earthly development and organismic function, are found to be distinguished by nested networks which join all their cellular, modular, communal scalar domains. With this overall frame in place, researchers can now go on to discern a common pattern and process which recurs in kind at every spatial and temporal instance.

Other typical entries are The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems; Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems; From Flatland to Jupiter: Searching for Rules of Interaction Across Biological Scales; Complex Temporal Biology: Towards a Unified Multi-Scale Approach to Predict the Flow of Information; and Deep Learning for Reintegrating Biology. In regard, a Grand Challenge is scoped out that does allude to a vivifying self-similar lawfulness which exists on its independent own. But such an imperative revolutionary admission by our EarthWise scientists remains in abeyance. (As a note, a working “Discovery Decade” title had been in place for our Chap. IX 2022 Summary Edition before I came across this project.)

NSF’S Big Ideas: Understanding the Rules of Life Life on our planet is arranged in levels of organization ranging from the molecular scale through to the biosphere. There exists a remarkable amount of complexity in the interactions within and between these levels of organization and across scales of time and space. The NSF Rules of Life Big Idea seeks to enable discoveries to better understand such interactions and identify causal, predictive relationships across these scales.

Hooft, Gerard t. et al.. The sounds of science a symphony for many instruments and voices.. Physica Scripta. 99/052501, 2024. As the abstract says, this 54 page edition is a second endeavor to gather diverse, select authorities including Nobel laureates to survey these conceptual frontiers. A first 2020 edition with this title appeared in this journal (95/6) edited by Gerianne Alexander. Typical entries are What characterises topological effects in physics? by Gerard ’t Hooft, Towards a machine that works like the brain: the neuromorphic computer by Ivan Schuller, et al, What can we say about the ‘Value of information’ in Biophysics? by Lázaro Castanedo, et al, What philosophers should really be thinking about by Roland Allen and Suzy Lidström and How much of physics have we found so far? By Anton Zeilinger. But again some 20 men and 3 women contribute essays with a specific focus sans any common theme. While disparate approaches within an intelligible cosmos are pursued, there is rarely a sense of closing on a real discovery. (see also at arXiv:2404.11724.)

Despite its amazing quantitative successes and contributions to revolutionary technologies, physics currently faces many unsolved mysteries ranging from the meaning of quantum mechanics to the nature of the dark energy and the future of the Universe. It is clearly prohibitive for the general reader, and even the best informed physicists, to follow the vast number of technical papers published in the thousands of specialized journals. For this reason, we have asked the leading experts across many of the most important areas of physics to summarise their global assessment of some of the most important issues. In lieu of an extremely long abstract summarising the contents, we invite the reader to look at the section headings and their authors, and then to indulge in a feast of stimulating topics spanning the current frontiers of fundamental physics from The Future of Physics by William D Phillips and What characterises topological effects in physics? by Gerard t Hooft through the contributions of the widest imaginable range of world leaders in their respective areas.

Hsieh, Shannon, et al.. The Phanerozoic Aftermath of the Cambrian Information Revolution. Paleobiology. 48/3, 2022. Akin to Cellular Self-Organization: An Overdrive in Cambrian Diversity by Filip Vujovic, et al in BioEssays (July 2022), University of Illinois, Chicago and University of Connecticut paleoecologists including Roy Plotnick achieve a similar perception of rapid, wide-spread cerebral and cognitive advances as organic forms suddenly leapt forward from simpler stages. Many studies from the Burgess Shale to Devonian phases of “nervous system complexities” provided an empirical basis. As a result, a graphic radiation can be sketched from no CNS to ganglia onto a relative brain. In their rare purview, soma and sensory together are seen to constitute life’s radical emergent, quicker transition (on its way to our late planetary reconstruction). (See V. Evolution for more)

Jafari, Sajad, et al. Collective Behavior of Nonlinear Dynamical Oscillators. European Physical Journal Special Topics. December, 2022. Teheran Polytechnic and Changzhou University physicists introduce, survey, and summarize a collection of 35 entries herein and elsewhere about the recently quantified presence of a universal propensity to seek and reside at an optimum dynamic, reciprocal condition. Some technical papers are Complete Synchronization Analysis of a Neocortical Network Model, Impact of Repulsive Coupling in Exhibiting Distinct Collective Dynamical States, and Dynamics and Chimera State in a Neural Network with Memristor Coupling as researchers try to define and express this favored feature. And we also wish to record that while Iran, China along with the USA, Russia and everywhere else is in total chaos, such current findings yet remain unknown, not supposed to exist, cut off and unable to contribute this phenomenal resolve.

Jagiello, Robert, et al. Tradition and Invention: The Bifocal Stance Theory of Cultural Evolution. Behavioral and Brain Sciences. April, 2022. Senior Oxford University anthropologists RJ, Cecilia Heyes and Harvey Whitehouse contribute a uniquely insightful, thorough revision of prior, vested theories of human societal emergence. Their survey of recent quantified research reveals a consistent occasion of dual, distinct, complementary preferences as the actual dynamic form and driver of homo sapiens culture. Their novel model proceeds to broadly identify these archetypal modes as continuity and change, conserve and create, a past or future emphasis, a long typical list ensues. In clever regard, they coin a Bifocal Stance Theory (BST), akin to balanced but bilateral eyesight clarity, which similarly appears in (Earthropological) effect across all manner of humankind habitations.

As a result, a timely contribution appears in April 2022 when it is so vitally needed. As readers know, horrific local and global incendiary, genocidal, conflagrations rage and spread, along with nuclear threats. For a deeper cause, they seem to occur from historic polarizations between these prime alternative options. A vested opposition of authority vs. freedom, right control or left liberal, socialism vs. individual, between these innate, bigender persuasions.. By an EarthWise integral vista, as A Complementary of Civilizations reports, East and West, South and North can actually compose bicameral hemispheres. How tragic then that China and Russia set an authoritarian fixation in violent contrast to a USA, European penchant for free individual license, when both cerebral modes are meant to work in concert. Once again, a sapient Earthuman discovery of a universal, genetic-like, complementarity across every realm of a procreative genesis now exists along side. over and above, such (male) senseless carnage against civilians and cities.

Cultural evolution depends on both innovation (new cultural variants by accident or design) and high-fidelity transmission (which preserves our accumulated knowledge). What is required is an overarching theory encompassing both dimensions? The Bifocal Stance Theory (BST) proposes that the co-existence of innovative change and stable tradition results from an avail of two different motivational stances at once. The BST framework sheds new light on the cognitive underpinnings of cumulative cultural change, selection, and spread within an encompassing evolutionary framework. (Abstract excerpt)

No other species is as dependent on culture as humans. Cultural adaptations resulting from
collectively accumulated bodies of knowledge turned a tropical primate into the ecologically
dominant species on the planet. To explain why, we have argued for the Bifocal Stance Theory of cultural evolution, which proposes that the co-existence of innovation and adherence to tradition results from our ability to adopt different motivational stances and associated copying paradigms attuned to the different functional affordances of the behaviour to be transmitted. (41-42)

Jusup, Marko, et al. Social Physics. arXiv:2110.01866. In a paper to appear in Physics Reports, a 16 member team with postings in Japan, Croatia, China, the USA, Luxembourg, the UK, Singapore, Germany, Russia, Italy, Spain, Austria. Slovenia and Taiwan including Petter Holme, Stefano Boccaletti and Matjaz Perc achieves a thorough survey of this (re)union project from its 18th century inklings (Auguste Comte, et al) to our pewawnr worldwise retrospective observance. Twelve chapters over 358 pages proceed from Urban Dynamics, and Econophysics to Pandemics and Climate Phenomena and topics such as polarization, tipping points, biodiversity, neighborhoods, mobility, deep learning AI, and multiplex connectivities. As we peoples may gain a global vista on an evident course from a substantial universe to our evident witness and participation, how might it at last dawn as grand universe to Earthuman discovery?

Recent years have seen a rise in the use of physics-inspired methods as a way to resolve diverse societal problems. Such an effort is due to physicists venturing beyond their usual field, but also by other scientists who wish to gain a deeper basis. Here, we dub this nascent endeavor as a "social physics." We first review the modern way of living that enables humankind's prosperous existence such as urban development, vehicular traffic, financial markets, civil cooperation, societal networks, and the integration of intelligent machines. We then move on to consider potential threats to like criminal behaviour, massive migrations, contagions, environmental issues, and finally climate change. Their coverage ends with ideas for future resolve. After some 360 pages and 1148 references we conclude that this integrative synthesis across this widest expanse seems quite promising. (Abstract excerpt)

Kelso, Scott. On the Coordination Dynamics of (animate) Moving Bodies. Journal of Physics: Complexity. 3/3, 2022. The veteran Florida Atlantic University complexity theorist (search) posts a synoptic review of this collegial endeavor from the 1990s to discern and articulate such perceived, natural, intrinsic forces as they give rise to personal and planetary agency. The paper opens with prior inklings to Isaac Newton, James Maxwell, and Erwin Schrodinger to set a conceptual scenario. Into our 2020’s, a novel quantification of these constant synergies (symbioses) can be factored to brace and explain. Kelso then notes prime study areas going forward to further distinguish and empower life’s innate, reciprocating ascendance. See also A Blueprint for the Study of the Brain’s Spatiotemporal Patterns by Emmanuelle Tognoli, Danielia Benites and S. Kelso at arXiv:2106.00637

Coordination comes in many guises and represents one of the most striking, but least understood features of living things. The different forms that coordination takes and how it emerges and changes are of great interest to the social and behavioral sciences, neuroscience, psychology, biology and physics itself. Inspired originally by theories of self-organization in open, nonequilibrium systems, coordination studies seek to understand such patterns at many scales and for multiple functions in living things. Here we review some of the key concepts of along with recent developments and posit ten tenets that may guide further understanding. (Abstract excerpt)

In response to Schrdodinger’s question (What is this “I”?), how recent work on human infants embedded in a specific environment is revealing how spontaneous self-organizing processes give rise to the ‘self’ or the directedness property of complex, biological systems, usually contained in terms like ‘agency’ ‘purpose’ and ‘intention’. We conclude with a summary of the main theoretical tenets of coordination dynamics, a theory of directed self-organization, intended to provide a stimulus for further research. (3)

Tenet Ten: Metastability is an expression of the full complexity of brains and people and gives rise to a plethora of complementary pairs such as individual - collective, competition - cooperation, segregation - integration, etc. Metastable coordination dynamics suggests that a deep principle of complementarity underlies life, brain, mind and society. The message of metastability is that in complex coordinated systems, thinking in terms of sharp dichotomies and contrarieties has to be replaced with far more subtle and sophisticated complementarities. (14)

Kocoglu, Cemile, et al. How Network-based Approaches can Complement Identification Studies in Frontotemporal Dementia. Trends in Genetics. 38/9, 2022. We cite this entry by University of Antwerp neurologists to notably record an integral turn beyond 20th century point gene - malady attributions. In this way medical diagnoses can include all the equally real interinking topologies (maybe GRN-like) as a causal factor for these cerebral deficits. An initial review of this overdue movement is Network Medicine: Complex Systems in Human Disease and Therapeutics by Joseph Loscalso, Albert-Laszlo Baribasi and Edwin Silverman (Harvard UP, 2017) which introduces this vital advance but its content has not been availed for brains until now.

Frontotemporal dementia (FTD) is a primary cause of dementia over a broad range of clinical phenotypes and cellular pathologies. Genetic discoveries in FTD have occurred in well-known extended families. In the context of complex diseases, it is hypothesized that mutations with reduced penetrance or a combination of low-effect size variants with environmental factors drive disease. In this review, we examine gene discovery approaches in FTD and introduce network biology concepts as tools to assist gene identification studies in genetically complex disease. (Abstract)

Kogut, Alan, et al. Kogut, Alan, et al. The Primordial Inflation Explorer (PIXIE): Mission Design and Science Goals. arXiv:2405.20403. We note this posting by seventeen astroscientists from across the USA, onto the UK, France and beyond led by NASA Goddard which detailed project plans as Earthropo sapiens proceeds apace with the task of astronomic self-quantification. See also The SKA Galactic Centre Survey: A White Paper at arXiv:2406.04022. Along with many similar endeavors, what a grand scenario is altogether revealed whence our unique knowsphere commences on an intrinsic course of (multi)universal self-quantification, representation, and select affirmation.

The Primordial Inflation Explorer (PIXIE) mission concept plans to measure the energy spectrum and linear polarization of the cosmic microwave background (CMB). PIXIE opens a broad discovery space for the origin, contents, and evolution of the universe. Measurements of small distortions from a CMB blackbody spectrum provide a robust determination of the mean electron pressure and temperature in the universe while constraining processes including dissipation of primordial density perturbations, black holes, and the decay or annihilation of dark matter. We describe the PIXIE instrument sensitivity, foreground subtraction, and anticipated science return from both the baseline 2-year mission and a potential extended mission. (Excerpt)

Kukarni, Suman, et al.. Information content of note transitions in the music of J. S. Bach. Physical Reviews Research. 6/013136, 2024. University of Pennsylvania systems scholars including Chris Lynn and Dani Bassett post an innovative appreciation that symphonic and melodious compositions are suffused with and arranged by multiplex networks. The paper reviews of a technical basis which is graphically illustrated. After many centuries the actual presence of natural rhythms is mathematically quantified and published in a Physics journal. See also Unsupervised cross-domain translation via deep learning and application to music-inspired protein designs by Markus Buehler in Patterns. (4/3, 2023) and Cells and sounds by Michael Spitzer in Progress in Biophysics and Molecular Biology (186, January 2024). If olny we could hear and listen to the song of the cell and of the ecosmos.



Music has a complex structure that expresses emotion and conveys information. Here we study a musical piece by way of networks formed by notes (nodes) and their transitions (edges). Thus we view compositions by J. S. Bach through the lens of network science, information theory, and statistical physics over a wide range of fugues and choral pieces. In turn, we consider human neural networks that enable efficient communication via heterogeneity and clustering. Taken together, our findings shed light on both Bach's work and further studies of complexities, creativity, and more. (Abstract excerpt)’

We hope that our framework inspires more exchanges between physics, cognitive science, and musicology. On a broader scale, our project investigates how information in complex systems is conceptually contained. To conclude, we highlight a number of exciting directions for future inquiry and outline ways in which our approach can be expanded upon and improved. (10) By providing an example of a comprehensive analysis of musical melodies, our version complements the rich study of language, music, and art as dynamic complex multiplex systems. Finally, a quantitative treatment of the patterns and motifs inspire analogies between music and other fields of science such as including understanding protein structures and designing organic materials. (12)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7  Next