![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
I. Our Planatural Edition: A 21st Century PhiloSophia, Earthropo Ecosmic PediaVersionC. An Earthumanity Era: A 2020s Global Cognizance Proceeds as a Knowsphere by Her/His Bicameral Self
Nonacs, Peter, et al.
Social Evolution and the Major Evolutionary Transition in the History of Life.
Frontiers in Ecology and Evolution.
December,
2021.
The editors for this special section are Peter Nonacs UCLA (Center for Behavior, Evolution & Culture,) Karen Kapheim, Utah State University (comparative genomics) and Heikki Helantera, University of Helsinki, (evolutionary ecology) are deeply engaged in field and conceptual studies which could be well served by an endemic structural arrangement and emergent orientation (Brief capsules in their own words below.) As an observation, just as a teleologic course could no longer be ignored (section herein), so this nested scale from 1995 is now similarly gaining a full, revelant acceptance. Its inclusion then describes a revolutionary (EarthWin) appreciation of life’s true developmental gestation. A further merit is a strongest case to date for an ascendant personsphere sapience learning on her/his own. In their classic 1995 book, John Maynard Smith and Eors Szathmáry sketched the evident presence of eight major evolutionary transitions (METs) in the long history of life on earth. But 27 years since, optional views, and detail debates about defining features and qualities still persist. Attempts to find deep, constant patterns and processes also go on, but have not yet integrated this entire sweep of evolution and ecology from replicating molecules to loquacious humans. It seemed appropriate to post a topical issue which could gather, assimilate and enjoin these many aspects, air specific issues and consider a common, nested sequence. To wit, METs are seen to occur as fusions of independent individuals into a higher order entity, along with a novel way that information is stored and transmitted. In addition, the ecological context where this ascendant course goes on is rarely considered. Into these 2020s, new findings and novel ideas about life’s developmental stirrings, genetic bases and consequent course to our consummate global retrospective could provide a salutary synthesis. (Nonacs, et al, Introduction excerpt) Ourllette, Nicholas. A Physics Perspective on Collective Animal Behavior. Physical Biology. 19.2, 2022. The Stanford University systems physicist (search) has become a leading authority for the study of dynamic group-wide activities, and the derivation of common features across all manner of species. His subject choice has been midge insects suitable for laboratory tests. (I heard Nicholas speak at UMass Amherst around 2010 when he was at Yale. A view even back then was that it didn’t matter which critter one chose, they all behave the same.) Into 2022, this timely review with 160 references can now cite a robust confirmation of this natural invariance. Premier research has investigated avian flocking, fish pods, wildebeest herds and all the way to invertebrate molds. (That is, except people because individual me yet opposes social We.) Akin to Self-Organization in Stellar Evolution (Georigiev, 2022), our EarthWise endeavors seem to be entering a new convergent stage of universal confirmations. Stars and starlings array and move to the same independent, genotype-like score and script. We may begin to glimpse an actual 2020s discovery that our participatory bioplanet is meant to achieve. The dynamic patterns and coordinated motion displayed by groups of social animals are a beautiful example of self-organization in natural far-from-equilibrium systems. Recent advances in active-matter physics have enticed physicists to consider how their results can be extended from microscale physical systems to groups of real, macroscopic animals. At the same time, better measurement technologies have achieved high-quality empirical data for animal groups both in the laboratory and the wild. In this review, I describe how physicists have approached synthesizing, modeling, and interpreting this information, both at the level of individual animals and the group scale. I focus on the kinds of analogies that physicists have made between animal groups and more traditional areas of physics. (Abstract)
Ravn, Ib.
Beyond Chaos and Rigidity, Flexstability.
New Ideas in Psychology.
August,
2022.
As peoples and cultures world over become so polarized between such dual archetypal opposites, persuasions or fixations, a senior Aarhus University, Danish School of Education psychologist proposes an evident (once and future) middle way integrative unity. See also similar suggestions such as tradition and innovation by Jagiello, Heyes and Whitehouse, and participants and socialism by Thomas Piketty. In our regard, an active balance of conserve/create, regress/progress, particle/wave, war/peace, me individual/We society on every scale and instance can viably ensue. mitigate and resolve. Chaos and rigidity are often used to describe problematic psychological states. If they are to be avoided, how does one conceive of a normative alternative? This paper proposes that underlying chaos and rigidity are two dimensions of healthy human experience, those of stability (focus, routine, unity) and flexibility (exploration, novelty, diversity). This essay proposes an optimal, unified state of “flexstability” in which individuals experience both flexibility and stability at the same moment. Chaos can be now understood as flexibility without stability, and rigidity as stability without flexibility. We apply this option to seven research areas in psychology: parenting styles, identity formation, development of mind, flow, creativity, emotional regulation and self-determination. (Abstract) Safron, Adam, et al. Making and Breaking Symmetries in Mind and Life. Interface Focus. April, 2023. Johns Hopkins University, SUNY Stony Brook, McGill University, Monash University and Tufts University (Michael Levin) introduce and edit an eclectic collection as a thematic essence that mindful behaviors provide a heretofore undervalued formative force. A broad sample of entries include Reflections on the Asymmetry of Causation by Jenann Ismael; On Bayesian Mechanics: A Physics of and by Beliefs by Maxwell Ramstead, et al; Embodied cognitive morphogenesis as a route to intelligent systems by Bradley Alicea, et al, As Without, So Within: How the Brain’s Temporal-Spatial Alignment Shapes Consciousness by Georg Northoff, et al; Emergence of common concepts, symmetries and conformity in agent groups by Marco Moller and Daniel Polani. Symmetries appear throughout the natural world, making them important in our quest to understand the world around us.. The study of symmetries is so fundamental to mathematics and physics that one might ask where else it proves useful. This theme issue poses the question: what does the study of symmetry, and symmetry breaking, have to offer for the study of life and the mind? (Excerpt) Sagan, Dorion. From Empedocles to Symbiogenesis: Lynn Margulis’s Revolutionary Influence on Evolutionary Biology. Biosystems. June, 2021. We cite this latest essay as a succinct record of her valiant endeavor to break out of old male fixation into a vital sense of an animate procreation graced by a universal principle of positive, reciprocal conciliations between all phases of organic entities. Yet we have a world tearing itself apart due to violent oppositions, which is in desperate need for such a unifying scientific vision. I have heard and met Lynn in Amherst, in my opinion she could merit being the one woman who could rise to the status of a Newton or Darwin. As a primary expositor of the work of Lynn Margulis collaborating with her over thirty years on over thirty books and forty articles, scientific and popular, I attempt here to summarize her unique and lasting influence on evolutionary biology. Describing life on Earth as the multi-billion-year evolution of microbial communities, from prokaryotes maintaining Earth's atmosphere away from thermodynamic equilibrium to all eukaryotes as polygenomic beings, Margulis's interdisciplinary work has deeply influenced multiple fields including systematics, theories of the evolution of metabolism, paleobiology, and biogeochemistry. Overturning the neo-Darwinist narrative that speciation almost always occurs by the gradual accumulation of random mutations, Margulis's work revives a discarded philosophical speculation of the pre-Socratic Empedocles, who suggested that Earth's early beings both merged and differentially reproduced. Margulis's curiosity-driven science, collaborative work ethic, status as a woman, embrace of novelty, philosophical stance, current status of her theories, and the proposal for a new science of symbiogenetics are among the topics examined. (Abstract excerpt)
Sanchez-Puig, Fernanda, et al.
Heterogeneity Extends Criticality.
arXiv.2208.06439.
In August 2022, a five person team with postings at the Universidad Nacional Autonóma de México, Microsoft, Redmond, Aalto University, Finland and far afield including Carlos Gershenson achieve a significant advance toward identifying how and why a middle way poise between a relative more or less order seems to be nature’s optimum preference. As the quotes cite, while equilibrium, homogeneous conditions are widespread, many animate, cerebral and environmental situations exist in and benefit from a dynamic, non-equilibrium or heterogeneous mode. In technical terms, these tendencies are dubbed a self-organized criticality, aka chimera states. The paper makes a major point that such a phenomenal distinction, along with other reasons, can well explain this “sweet spot” universality that complex network systems from galactic clusters to communal groupings tend to seek and at best achieve. Criticality states have been proposed as vital for the emergence of complexity, life, and computation, as it exhibits a balance between order and chaos. In classic models of complex systems where structure and dynamics are considered homogeneous, criticality is restricted to phase transitions. Many real-world complex systems, however, are not homogeneous as elements change in time faster than others, with slower main elements providing robustness, and faster ones being adaptive. Connectivity patterns are likely heterogeneous with few elements and many interactions. Our studies well support this distinction and the ubiquitous presence of heterogeneity across physical, biological, social and technological systems. (Abstract)
Sarkanych, Petro, et al.
Network Analysis of the Kyiv Bylyny Cycle – East Slavic Epic Narratives.
arXiv:2203.10399.
This March 19 entry could not be more timely to an extent that our review could illume the historic, 20th to 21st century, homo to Earthropo sapience, complex network science ecosmic revolution. The authors are PS, and Yurij Holovatch (search) Doctoral College for the Statistical Physics of Complex Systems, National Scientific Academy of Ukraine; Nazar Fedorak, Ukrainian Catholic University; Padraig Maccarron, University of Limerick, Ireland; Josef Yose and Ralph Kenna (search) Coventry University, UK. With their veteran erudition, they bring a scholarship which can allow, perceive and verify a thousand heroic versions of gore and glory (little love) which yet hold to and manifest a common, fractal-like storyline with an array of iconic characters. But as March madness carnage engulfs Lviv, an ancient treasure, such an Earthuman learning, thinking faculty whom can witness these integral patterning is still unknown. For such reasons, we remain unable to add the evident presence of an independent, universal mathematic source code in genetic effect. Since the pioneering work of Joseph Campbell in the 1960's, universality emerged as an important qualitative notion in the field of comparative mythology. In recent times, the advent of network science permitted new quantitative approaches to literary studies. Here we bring the Kyiv bylyny cycle into the field -- East Slavic epic narratives originating in modern-day Ukraine. By comparison to other European epics, we can novel commonalities of social networks in bylyny. We analyse community structures and rank important characters. The method can define the solar position of Prince Volodymyr and show how the Kyiv cycle has affinities wih narrative networks from similar national tales. Besides new narratological insights, we hope this study will aid scholars and peoples to better appreciate Ukraine's heroic history. (Abstract excerpt) (We ought to notice that Putin’s brave adversary, the Ukrainian president is named Volodymyr.) Scharf, Caleb and Olaf Witkowski. Rebuilding the Habitable Zone from the Bottom Up with Computational Zones. arXiv:2303.16111. CS is now at NASA Goddard (see below, search) and OW is a University of Tokyo astrobiologist who introduce and exercise an array of novel insights about an essential nature of life and beingness, broadly conceived, so as to better find, perceive and understand. We offer these several quotes. Computation, if treated as a set of physical processes that act on information represented by states of matter, encompasses biological, digital and other phases, and may be a fundamental measure of living systems. The opportunity for biological computation, via the propagation and selection-driven evolution of information-carrying organic molecular structures, has so far been applied to planetary habitable zones with conditions such as temperature and liquid water. Here a general concept is proposed by way of three features: capacity, energy, and substrate. (Excerpt)
Shettigar, Nandan, et al.
On the Biophysicsl Complexity of Brain Dynamics.
Dynamics.
2/2,
2022.
Texas A & M University bioengineers led by Steve Suh (see website) post a 35 page, 245 reference latest review of our human cerebral faculty as it has now become quantified and understood by way of network multiplex topologies, information process capacities and a preferred self-organized criticality. A typical topic is Complex Global Multimodal Synchronization from Local Nonlinear Interactions. As the quotes allude, two decades into the 21st century, our personal cognitive endowment is found to organize itself so as to think and learn in a wild world. In regard, our emergent acumen (as well as our own selves) can be appreciated as an iconic exemplar of the whole genesis ecosmos from which it arose from.
Sormunen, Silja, et al. Critical Drift in a Neuro-Inspired Adaptive Network. arXiv:2206.10315. After some years of worldwide study, SS and Jari Saramaki, Aalto University, Finland, along with Thilo Gross, University of Oldenburg, Germany agree, that cerebral activities do in fact seek and reside at a preferred self-organized poise. As the Abstract notes, it is now time to consider and explore the full operational, cognitive presence of this optimum feature. Our Universal Genesis view in mid 2022 might then report similar realizations from astrophysical realms to bicameral societies. A glimpse of an intrinsic self-organized criticality, aka nature’s complementary sweet spot, could begin to grace and advise these traumatic times. It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has been depicted as a one-dimensional process, mainly with a single parameter tuned to a critical value. However, the number of adjustable facets in the brain is vast, and hence critical states can occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, poised between inactivity and persistent activity. During the occasion, global network parameters continue to change while the system remains at criticality. (Abstract) Tadic, Bosiljka and Roderick Melnik. Self-Organized Critical Dynamics as a Key to Fundamental Features of Complexity in Physical, Biological and Social Networks. Dynamics. 2/2, 2022. Senior theorists in Solvenia and Canada (see bio’s below and home websites) provide a select, consummate survey of 21st century worldwise multiplex non-equilibrium system studies as they may reach their current convergent, integrative syntheses across every spatial and temporal, uniVerse to humanVerse, domain. We pair the entry with On the Biological Complexity of Brain Dynamics by N. Shettigar, et al in this issue so as prime instances of a epochal discovery event in our midst. Herein the emphasis is on novel findings about nature’s consistent propensity to seek and reside at an optimum mid-point balance between more or less relative coherence. The paper reviews technical attributes such as self-similarity, power laws, multifractal landscapes, simplicial networks, collective behaviors and all else. As one reads along, the text reiterates the cerebral descriptions in the other paper. That is to say, our Earthropocene sapience, as it learns and thinks on its own, can has well found and defined the presence of a familial genetic-like code which universally recurs in kind everywhere. Studies of many complex systems have revealed new collective behaviours that emerge through the mechanisms of self-organised critical fluctuations. These collective states with long-range spatial and temporal correlations often arise from an external dynamic drive with an intrinsic nonlinearity and geometric interactions. The self-similarity of critical fluctuations enables us to describe natural systems using fewer parameters and universal functions that can then simplify the computational and information complexity. Current research on self-organised critical systems across many scales strives to formulate a unifying mathematical framework by way of critical universal properties in information theory. Through physical, biological, and social network exemplars, we show how a constant self-organised criticality occurs at the interplay of the complex topology and driving mode. (Abstract excerpt) Teuscher, Christof. Revisiting the Edge of Chaos: Again?.. Biosystems. May, 2022. The veteran Portland State University systems theorist looks back over the course of this perception all the way to Stuart Kauffman’s autocatalysis whereof life prefers to seek and reside at an active poise between more or less order. Albeit along the way there were doubts, problems and variations, but it can indeed once more be affirmed that this optimum balance does seem to be in prevalent effect across much natural and social phenomena. Which into 2022, with L. da Costa and myriad other confirmations, would constitute an epochal, salutary discovery. Does biological computation happen at some sort of “edge of chaos”, a dynamical regime somewhere between order and chaos? And if so, is this a fundamental principle that underlies self-organization, evolution, and complex natural and artificial systems that are subjected to adaptation? In this article, we will review the literature on the fundamental principles of computation in natural and artificial systems at the “edge of chaos”. The term was coined by Norman Packard in the late 1980s. Since then, the concept of “adaptation to the edge of chaos” was demonstrated and investigated in many fields where both simple and complex systems receive some sort of feedback. Besides reviewing both historic and recent literature, we will also review critical voices of the concept. (Excerpt)
Previous 1 | 2 | 3 | 4 | 5 Next
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |