(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet Lifescape

1. Quantum Cosmology Theoretic Unity

Javarone, Marco and Giuliano Armano. Quantum-Classical Transitions in Complex Networks. Journal of Statistical Mechanics. Online April, 2013. As these earlier fields of physics presently merge with nonlinear systems science, since both study the same phenomena, life’s dynamic intricacies can become joined with and understood via classical and quantum theories. Here University of Cagliari, Italy physicists contend that since nature and society from “biological cells to the World Wide Web” is composed of many, non-equilibrium, interacting elements, they can be modeled by way of Bose nets and Fermi-Dirac statistics. So it really is a small world and a truly unified lively universe.

This paper shows that the emergence of different structures in complex networks, such as the scale-free and the winner-takes-all networks, can be represented in terms of a quantum–classical transition for quantum gases. In particular, we propose a model of fermionic networks that allows us to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, clearly highlight the separation between classical random and winner-takes-all networks, in full correspondence with the separation between classical and quantum regions for quantum gases. (Abstract)

Fermionic networks show that the emergence of a scale-free structure can be represented as a quantum-classical transition for quantum gases. In particular, a scale-free network correspond to a fermionic gas approximated by the quantum regime at low temperatures. On the other hand, a simple random network corresponds to the same gas in classical regime at high temperatures. Similar considerations about the connection between classical random and scale-free networks have been proposed in Ref. [8]. The authors show that, in the cold regime, their network is scale-free, but as the temperature increases, the network loses its metric structure and its hierarchical heterogeneous organization {becoming a classical random network. Considering that many real complex networks are scale-free and others have not this structure, see Ref. [14], we deem that the proposed fermionic model can be considered a good candidate for representing their evolution, at low and high temperatures, respectively. (11)

Kaiser, David. When Fields Collide. Scientific American. June, 2007. A Harvard historian of science recounts the 1970s and 1980s convergence of particle physics and the quantum origin of the universe.

Karlsson, Torgny, et al. Pre-Galactic Metal Enrichment: The Chemical Signatures of the First Stars. Reviews of Modern Physics. Online April, 2013. Also available at arXiv:1101.4024, spatial and temporal cosmic reaches are newly accessible whereof astronomers Karlsson and Joss Bland-Hawthorn, University of Sydney, with Volker Bromm, University of Texas at Austin, can detect chemical signatures from Galactic halos, Low mass galaxies, impacting Star clusters, primordial nucleosynthesis, and so on. Whom then altogether might we prodigies be, a sapient personsphere, as the phenomenal way our universe tries to describe and discover itself?

The emergence of the first sources of light at redshifts of z ~ 10-30 signaled the transition from the simple initial state of the Universe to one of increasing complexity. We review recent progress in our understanding of the formation of the first stars and galaxies, starting with cosmological initial conditions, primordial gas cooling, and subsequent collapse and fragmentation. We emphasize the important open question of how the pristine gas was enriched with heavy chemical elements in the wake of the first supernovae. We conclude by discussing how the chemical abundance patterns conceivably allow us to probe the properties of the first stars and subsequent stellar generations, and allow us to test models of early metal enrichment. (Abstract)

Kauffman, Stuart. Towards a Post Reductionist Science: The Open Universe. http://arxiv.org/abs/0907.2492. Posted on July 8, 2009, in part as a response to Stephen’s Hawking disavowal of a final theory, see above. Do access the full paper for as usual it is not fair to annotate Kauffman, to wit he reinterprets the multiverse in terms of Darwinian selection whereof our present cosmos is seen to possess unique “enabling laws or constraints” that imbue an unplanned potential for emergent creativeness.

The heart of what I want to explore begins with this: The very laws of physics may be open to being viewed as enabling constraints - enabling constraint laws selected by an abiotic natural selection among a set of possible laws to yield our extremely complex universe. And our single universe, not the multiverse and its attending weak Anthropic principle, may be the ’winning’ universe that is enabled by the opportunities afforded by those laws. In winning, our universe would then have evolved its laws such that the winning universe is ours. (2)

Again, reductionism and the consequent faith in deductive entailment yields a universe barren of creativity, a tautological realm entailed by the hoped for theory of everything. In contrast, if ’law’ is enabling constraint, and that enablement enables opportunities that can, blindly, be seized by the becoming of the universe in its full becoming, then the universe is open to myriad creativity. The universe is open in ways we have not dreamed in Western science since Descartes. (3)

Kibble, Tom and George Pickett. Introduction. Cosmology Meets Condensed Matter. Philosophical Transactions of the Royal Society A. 366/2793, 2008. An array of articles on the interface and convergence of our world today with long ago and far away finds a repetitious universality as the same phenomena recur at each instantiation.

At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB (‘Cosmology in the Laboratory’) that ran from 2001 to 2006. (2793)

Just as a superfluid or superconductor will go through a phase transition when it cools past the critical temperature Tc, so the early Universe, cooling after the big bang, may have undergone a sequence of symmetry-breaking phase transitions. (2793-2794)

Kinney, Will. An Infinity of Worlds: Cosmic Inflation and the Beginning of the Universe. Cambridge: MIT Press, 2022. A veteran SUNY Buffalo physicist writes a latest theoretical survey of this apparent instant origin. A novel expansion goes on to consider a multiversal occasion.

In the beginning was the Big Bang: an unimaginably hot fire almost fourteen billion years ago in which the first elements were forged. The physical theory of the nascent universe—the Big Bang—was a most consequential development in twentieth-century science. And yet it leaves many questions unanswered. Kinney argues that cosmic inflation is a transformational idea in cosmology, changing our picture of the basic structure and raising questions about what we mean by a scientific theory. He explains that inflation is a remarkable unification of inner space and outer space, in which the physics of the very large (the cosmos) meets the physics of the very small (particles and fields), closing in a full circle at the first moment of time.

Kiukas, Jukka, et al. Complementary Observables in Quantum Mechanics. Foundations of Physics. Online April, 2019. Aberystwyth University, UK and University of Turku, Finland mathematicians contribute to a special issue about the esteemed University of York physicist Paul Busch (1955-2018) with whom they collaborated with for years. They advance Busch’s insights and expressions that natural phenomena tends to ever seek and reside in a dynamic duality, rather than a single state. Albeit by way unfamiliar terms and mathematical depth, a salient conclusion can be broached. This fantastic spacescape whence we find ourselves, which is yet amenable to our inquiry, is indeed distinguished by reciprocal archetypes at each and every instance. The authors open with a quote (see below) from his 1997 paper which suggests an “unsharp” milieu that is in some critical poise between complements, rather than a one thing theory. His Quantum Research Page is still online (paulbusch.wixsite.com/research-page) where an array of papers and conferences can be accessed. A special journal issue about Paul Busch is forthcoming, to which this belongs. See also Quantum Reality, Perspectivalism and Covariance by Dennis Dieks at arXiv:1905.05097 for another entry.

We review the notion of complementarity of observables in quantum mechanics, as formulated and studied by Paul Busch and his colleagues over the years. In addition, we provide further clarification on the operational meaning of the concept, and present several characterisations of complementarity—some of which new—in a unified manner, as a consequence of a basic factorisation lemma for quantum effects. We work out several applications, including the canonical cases of position–momentum, position–energy, number–phase, as well as periodic observables relevant to spatial interferometry. We close the paper with some considerations of complementarity in a noisy setting, focusing especially on the case of convolutions of position and momentum, which was a recurring topic in Paul’s work on operational formulation of quantum measurements and central to his philosophy of unsharp reality. (Abstract)

We hope to have demonstrated that one can safely open a pair of complementary ‘eyes’ simultaneously. He who does so may even ‘see more’ than with one eye only. The means of observation being part of the physical world, Nature Herself protects him from seeing too much and at the same time protects Herself from being questioned too closely: quantum reality, as it emerges under physical observation, is intrinsically unsharp. It can be forced to assume sharp contours – real properties – by performing repeatable measurements. But sometimes unsharp measurements will be both, less invasive and more informative. (Operational Quantum Physics Paul Busch 1997)

Kuhlmann, Meinard. What is Real? Scientific American. August, 2013. Its online title is “Physicists Debate Whether the World is Made of Particles or Fields or Something Else Entirely.” In this post Large Collider time, whose finding of the Higgs Boson is now not seen to really mean much, a major rethinking of course has commenced. Akin to Lee Smolin’s Time Reborn, e.g., a University of Bremen philosopher of physics proposes that something else and more is going on via the real interconnections between objects. As tangibly present in themselves, this dynamic domain might be seen, for example in a “Structures to the Rescue” section, as a version of the “organization” that distinguishes living organisms.

With the two standard, classical options (particles or fields) gridlocked, some philosophers of physics have been formulating more radical alternatives. They suggest that the most basic constituents of the material world are intangible entities such as relations or properties. One particularly radical idea is that everything can be reduced to intangibles alone, without any reference to individual things. It is a counterintuitive and revolutionary idea, but some argue that physics if forcing it on us. (42)

Laudisa, Federico and Carlo Rovelli. Relational Quantum Mechanics. Stanford Encyclopedia of Philosophy. 2008. Online at http://plato.stanford.edu/entries/qm-relational, a succinct entry that reality is composed of and distinguished by much more than a profusion of objects. The equally present interconnections in between every thing are nature’s salient quality and essence, a view at the edge of the 21st century turn from particles to people, a yin and yang of communion and agency.

The physical world is thus seen as a net of interacting components, where there is no meaning to the state of an isolated system. A physical system (or, more precisely, its contingent state) is reduced to the net of relations it entertains with the surrounding systems, and the physical structure of the world is identified as this net of relationships.

This way of thinking the world has certainly heavy philosophical implications. The claim of the relational interpretations is that it is nature itself that is forcing us to this way of thinking. If we want to understand nature, our task is not to frame nature into our philosophical prejudices, but rather to learn how to adjust our philosophical prejudices to what we learn from nature.

Lederman, Leon. The God Particle. Nature. 448/310, 2007. A perspective paper in a special section on the Large Hadron Collider, wherein nine articles provide a good review of the past 50 years of the particle paradigm. But one wonders if this endeavor has more than run its course, scoffing up funds, as others have noted, which cannot detect in its benthic depths a self-organizing cosmic to human genesis.

Lemoine, Martin, et al, eds. Inflationary Cosmology. Berlin: Springer/Praxis Publishing, 2008. Papers from a 2006 Paris colloquium on the 25th anniversary of the theory that the universe, in its first instant, experienced a vast ballooning expansion from a singular point of origin. With some modifications, this phenomenon has been verified and serves to unify a number of disparate findings. A lead, notable article is by Andrei Linde on this past history, and its latest multiverse and anthropic implications.

Levin, Michael and Xiao-Gang Wen. Photons and Electrons as Emergent Phenomena. Reviews of Modern Physics. 77/3, 2005. Another example of a welling, fundamental shift from an inanimate, 20th century physical nature composed of particles alone. A quite different universe is lately being realized, which is here composed of “string-nets” (not to be confused with string theory) from whose “condensations” develops the overt intricate structure of the universe. A reference is made to Nobel laureate Philip Anderson, we would add Robert Laughlin, Stephen Adler, and others who propose, in this nascent revision, some deeper, non-particulate realm as the real source of a cosmic gestation.

As we probe nature at shorter and shorter distance scales, we will either find increasing simplicity, as predicted by the reductionist particle physics paradigm, or increasing complexity, as suggested by the condensed-matter point of view. We will either establish that photons and electrons are elementary particles, or we will discover that they are emergent phenomena – collective excitations of some deeper structure that we mistake for empty space. (879)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]