(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. An Organic, Conducive, Habitable MultiUniVerse

F. Systems Cosmology: Fractal SpaceTimeMatter

Landais, Francois, et al. Multifractal Topography of Several Planetary Bodies in the Solar System. arXiv:1805.11249. When this website went online in the early 2000s, observations of a naturally pervasive self-similar geometry were spurious if at all. Here geophysicists Landais and Frederic Schmidt, Universite Paris-Saclay, and Shaun Lovejoy, McGill University evince a self-similar mathematical presence across our home stellar array. See also Universal Multifractal Martian Topography by this team in Nonlinear Processes in Geophysics (22/6, 2015).

Topography is the expression of both internal and external processes of a planetary body. We propose here to use the multifractal approach to describe fields of topography. This theory both encompass height and slopes and other statistical moment of the field, tacking into account the scale invariance. As we commonly observe the juxtapostion of rough and smooth at given scale, the multifractal framework seems to be appropriate for hypsometric studies. Here we analyze the data at global scale of the Earth, Mars, Mercury and the Moon and find that the statistics are in good agreement with the multifractal theory for scale larger than 10km. Surprisingly, the analysis shows that all bodies have the same fractal behavior for scale smaller than 10km. (Abstract excerpts)

Lapidus, Michel. An Overview of Complex Fractal Dimensions. arXiv:1803.10399. The French-American, UC Riverside polymathematician posts a latest intricate, 100+ page, contribution about nature’s intrinsic, structural self-similarities. Visit the author’s website for a lifetime lists of papers and books such as Fractal Geometry, Complex Dimensions and Zeta Functions (Springer 2013). Since our sapient emergence arises from these same geometric codes, when might we see ourselves as their way of reaching conscious recognition, so as we may carry forth to a new creation?

Laskin, Nick. Fractals and Quantum Mechanics. Chaos. 10/4, 2000. A novel hypothesis of a “fractional quantum physics” as an indication of its fundamentally discrete, self-similar character.

Liang, L., et al. Self-Similarities and Power-laws in the Time-resolved Spectra of GRB 190114C, 130427A, 160509A, and 160625B. arXiv:1910.12615. In an entry to appear in Astronomy & Astrophysics, five scientists at the International Center for Relativistic Astrophysics Network, Pescara, Italy report upon the title Gamma Ray Burst (GRB) phenomena as it exemplifies a natural fractal display.

Conclusion: The most far reaching discovery of self-similarities and power-laws are extensively confirmed, thanks also to the conclusions presented in the companion papers, which leads to the existence of a discrete quantized repetitive polarized emission on a timescale as short as 10−14s. These results open new paths in the discovery of fundamental physical laws.

Lima, J. A. S. and R. E. de Souza. Power-law Stellar Distributions. Physica A. 350/303, 2005. Another example of how and where nonlinear self-similarities are being found on interstellar scales.

Liu, Qin. Towards a Fractal Approach to Hadronization. Physica A. 338/1-2, 2004. One more example of the intensifying global discovery of a self-similar universality from quanta to humankind.

Financial markets and those at the subnuclear level of matter are very much the same. (42)

Maeder, Andre. Evolution of the Early Universe in the Scale Invariant Theory. arXiv:1902.10115. The Geneva Observatory astronomer (search) expands his collegial quantification of a universally repetitious self-similarity onto the whole evolutionary cosmos. See also The Growth of the Density Fluctuations in the Scale-Invariant Vacuum Theory by AM and Vesselin Gueorguiev at 1811.03495.

Analytical solutions are obtained for the early cosmological phases in the scale invariant models with curvature k=0. The physical properties in the radiative era are derived from conservation laws and compared to those of current standard models. The critical runs of the temperature and of the expansion rate of the scale invariant models with low densities, are quite similar at the time of nucleosynthesis to those of standard models, leading to the same freezing number ratio of neutrons to protons. These results are consistent with the fact that the scale invariant models appear to not require the presence of dark matter. (Abstract)

Maeder, Andre. The Acceleration Relation in Galaxies and Scale Invariant Dynamics. arXiv:1804.04484. We cite this work by a Geneva Observatory astronomer records in 2018 how a broad and deep cosmic self-similarity, only spurious two decades ago, has now become commonly accepted, Here a collaborative technical presentation explains in extensive detail. See also Self-Similar Behavior in Galaxy Dynamics and Distributions of Dark Matter at 1804.06212.

We show that the scale invariant theory, with the assumption of the scale invariance of the empty space, correctly predicts the observed deviations in the acceleration relation. The large deviations and the flattening of the acceleration relation observed for the dwarf spheroidal galaxies are also well described. The presence of dark matter is no longer necessary in the scale invariant context, which also accounts why dark matter usually appears to dominate in galactic regions with low baryonic gravities. (Abstract excerpt)

Marcolli, Matilde and Nicolas Tedeschi. Multifractals, Mumford Curves and Eternal Inflation. P-Adic Numbers, Ultrametric Analysis, and Applications. 6/2, 2014. We select this certain paper as an example of the infinite brilliance of an ordained human ability to quantify and comprehend any breadth and depth of natural phenomena. In this new journal described below, Caltech mathematicians contribute to our project as the universe’s way of consciously perceiving how thee and we came into being and becoming. Search Karthnik Siva for more of the lead author’s contributions.

We relate the Eternal Symmetree model of Harlow, Shenker, Stanford, and Susskind to constructions of stochastic processes related to quantum statistical mechanical systems on Cuntz-Krieger algebras. We extend the eternal inflation model from the Bruhat-Tits tree to quotients by p-adic Schottky groups, again using quantum statistical mechanics on graph algebras. (Abstract)

This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.

McAteer, James. Frozen-in Fractals All Around: Inferring the Large Scale Effects of Small-Scale Magnetic Structure. arXiv:1506.07914. A New Mexico State University, Solar Physics and Space Weather Group astronomer surveys the latest findings of a pervasive, inherently self-similar topology of the celestial raiment. See also 25 Years of Self-Organized Criticality: Numerical Detection Methods at arXiv:1506.08142 with McAteer as the lead author.

The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with large current densities at large size scale will be the source of energy storage for solar eruptive events. (Abstract)

McCullagh, Nuala, et al. Toward Accurate Modeling of the Nonlinear Matter Bispectrum. arXiv:1507.07824. As the Abstract explains, McCullagh, Institute of Computational Cosmology, Durham University, UK, Donghui Jeong, Institute for Gravitation and the Cosmos, Penn State University, and Alexander Szalay, Johns Hopkins University cite one more approach that reveals a self-similar, infinitely iterative ecosmos.

Accurate modeling of nonlinearities in the galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function, is essential to fully exploit it as a cosmological probe. In this paper, we present numerical and theoretical challenges in modeling the nonlinear bispectrum. First, we test the robustness of the matter bispectrum measured from N-body simulations using different initial conditions generators. We then compare various analytical formulas and empirical fitting functions for modeling the nonlinear matter bispectrum, and discuss the regimes for which each is valid. We find that the next-to-leading order (one-loop) correction from standard perturbation theory matches with N-body results on quasi-linear scales for z≥1. (Abstract excerpts)

Miniati, Francesco and Andrey Beresnyak. Self-Similarity of Dynamo Action in the Largest Cosmic Structures. Nature. 523/59, 2015. Amongst a current rush of reports which confirm this ubiquitous topology, ETH Zurich and Royal Institute of Technology, Stockholm, physicists find galactic clusters, which are turbulent, magnetized media formed by gravitational instabilities, to exhibit a fractal topology. The permanent character of this hierarchy reflects yet another type of self-similarity in cosmology, while its structure, consistent with current data, encodes information about the efficiency of turbulent heating and dynamo action. The paper is also posted at arXiv:1507.01940.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next