
III. An Organic, Conducive, Habitable MultiUniVerseF. Systems Cosmology: Fractal SpaceTimeMatter Krioukov, Dmitri, et al. Network Cosmology. Nature Scientific Reports. 2/793, November, 2012. On occasion, a paper comes along of such unique, meritous content that it bodes for a significant breakthrough and synthesis. A team of five University of California, San Diego, systems scientists with Marian Boguna, a University of Barcelona physicist, proceed via sophisticated quantifications to discern the same nonlinear dynamics that infuse from proteins to cities within celestial topological networks. Its technical acumen and depth requires several excerpts. For example, Figure 2, “Mapping between the de Sitter universe and complex networks” illustrates many isomorphic affinities. As per Figure 4, “Degree distribution and clustering in complex networks and space time,” Internet, social network, brain anatomy, and hyperbolic spatial lineaments all graph on the same line, indicating common node and link geometries. As the quotes allude, a grand unification of universe, life, cognition, and humankind could be in the offing, a nascent witness of a biological genesis uniVerse. Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the largescale structure of spacetime in our accelerating universe is a powerlaw graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the largescale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. (Abstract) Kroger, Helmut, ed. Fractal Geometry in Quantum Physics. Chaos, Solitons & Fractals. 14/6, 2002. A special issue to explore the pervasive selfsimilarity of nature from subatomic to galactic realms. Landais, Francois, et al. Multifractal Topography of Several Planetary Bodies in the Solar System. arXiv:1805.11249. When this website went online in the early 2000s, observations of a naturally pervasive selfsimilar geometry were spurious if at all. Here geophysicists Landais and Frederic Schmidt, Universite ParisSaclay, and Shaun Lovejoy, McGill University evince a selfsimilar mathematical presence across our home stellar array. See also Universal Multifractal Martian Topography by this team in Nonlinear Processes in Geophysics (22/6, 2015). Topography is the expression of both internal and external processes of a planetary body. We propose here to use the multifractal approach to describe fields of topography. This theory both encompass height and slopes and other statistical moment of the field, tacking into account the scale invariance. As we commonly observe the juxtapostion of rough and smooth at given scale, the multifractal framework seems to be appropriate for hypsometric studies. Here we analyze the data at global scale of the Earth, Mars, Mercury and the Moon and find that the statistics are in good agreement with the multifractal theory for scale larger than 10km. Surprisingly, the analysis shows that all bodies have the same fractal behavior for scale smaller than 10km. (Abstract excerpts) Lapidus, Michel. An Overview of Complex Fractal Dimensions. arXiv:1803.10399. The FrenchAmerican, UC Riverside polymathematician posts a latest intricate, 100+ page, contribution about nature’s intrinsic, structural selfsimilarities. Visit the author’s website for a lifetime lists of papers and books such as Fractal Geometry, Complex Dimensions and Zeta Functions (Springer 2013). Since our sapient emergence arises from these same geometric codes, when might we see ourselves as their way of reaching conscious recognition, so as we may carry forth to a new creation? Laskin, Nick. Fractals and Quantum Mechanics. Chaos. 10/4, 2000. A novel hypothesis of a “fractional quantum physics” as an indication of its fundamentally discrete, selfsimilar character. Liang, L., et al. SelfSimilarities and Powerlaws in the Timeresolved Spectra of GRB 190114C, 130427A, 160509A, and 160625B. arXiv:1910.12615. In an entry to appear in Astronomy & Astrophysics, five scientists at the International Center for Relativistic Astrophysics Network, Pescara, Italy report upon the title Gamma Ray Burst (GRB) phenomena as it exemplifies a natural fractal display. Conclusion: The most far reaching discovery of selfsimilarities and powerlaws are extensively confirmed, thanks also to the conclusions presented in the companion papers, which leads to the existence of a discrete quantized repetitive polarized emission on a timescale as short as 10−14s. These results open new paths in the discovery of fundamental physical laws. Lima, J. A. S. and R. E. de Souza. Powerlaw Stellar Distributions. Physica A. 350/303, 2005. Another example of how and where nonlinear selfsimilarities are being found on interstellar scales. Liu, Qin. Towards a Fractal Approach to Hadronization. Physica A. 338/12, 2004. One more example of the intensifying global discovery of a selfsimilar universality from quanta to humankind. Financial markets and those at the subnuclear level of matter are very much the same. (42) Maeder, Andre. Evolution of the Early Universe in the Scale Invariant Theory. arXiv:1902.10115. The Geneva Observatory astronomer (search) expands his collegial quantification of a universally repetitious selfsimilarity onto the whole evolutionary cosmos. See also The Growth of the Density Fluctuations in the ScaleInvariant Vacuum Theory by AM and Vesselin Gueorguiev at 1811.03495. Analytical solutions are obtained for the early cosmological phases in the scale invariant models with curvature k=0. The physical properties in the radiative era are derived from conservation laws and compared to those of current standard models. The critical runs of the temperature and of the expansion rate of the scale invariant models with low densities, are quite similar at the time of nucleosynthesis to those of standard models, leading to the same freezing number ratio of neutrons to protons. These results are consistent with the fact that the scale invariant models appear to not require the presence of dark matter. (Abstract) Maeder, Andre. The Acceleration Relation in Galaxies and Scale Invariant Dynamics. arXiv:1804.04484. We cite this work by a Geneva Observatory astronomer records in 2018 how a broad and deep cosmic selfsimilarity, only spurious two decades ago, has now become commonly accepted, Here a collaborative technical presentation explains in extensive detail. See also SelfSimilar Behavior in Galaxy Dynamics and Distributions of Dark Matter at 1804.06212. We show that the scale invariant theory, with the assumption of the scale invariance of the empty space, correctly predicts the observed deviations in the acceleration relation. The large deviations and the flattening of the acceleration relation observed for the dwarf spheroidal galaxies are also well described. The presence of dark matter is no longer necessary in the scale invariant context, which also accounts why dark matter usually appears to dominate in galactic regions with low baryonic gravities. (Abstract excerpt) Maeder, Andre and Vesselio Gueorguiev. ScaleInvariant Dynamics of Galaxies, MOND, Dark Matter and Dwarf Spheriodals. arXiv:2001.04978. Geneva Observatory and Institute for Advanced Physical Studies, Sofia astrophysicists report further evidence for nature’s pervasive celestial selfsimilarity. In regard, when we first posted this section in the early 2000s, a detection of any fractal forms in space was spurious and patchy. At this new 2020 decade dawns, their presence in every feature across the spatial raiment and its temporal course are now well proven. By a natural philoSophia, might we contemplate where do these ordained, nonrandom mathematical regularities come from. Might we wonder and as whatever reality put them there in the first place. The ScaleInvariant Vacuum (SIV) theory is based on (Herman) Weyl's Integrable Geometry, endowed with a gauge scalar field. The main difference between MOND (Modified Newtonian Dynamics) and the SIV theory is that the first considers a global invariance of space and time, where the scale factor λ is constant, while the second considers λ as a function of time. The SIV theory shows an excellent agreement with observations and with MOND for baryonic gravities. These results support the view that there is no need for dark matter and that the RAR (Radial Acceleration Relation) and dynamical galaxies can be interpreted by a modification of gravitation. (Abstract excerpt) Marcolli, Matilde and Nicolas Tedeschi. Multifractals, Mumford Curves and Eternal Inflation. PAdic Numbers, Ultrametric Analysis, and Applications. 6/2, 2014. We select this certain paper as an example of the infinite brilliance of an ordained human ability to quantify and comprehend any breadth and depth of natural phenomena. In this new journal described below, Caltech mathematicians contribute to our project as the universe’s way of consciously perceiving how thee and we came into being and becoming. Search Karthnik Siva for more of the lead author’s contributions. We relate the Eternal Symmetree model of Harlow, Shenker, Stanford, and Susskind to constructions of stochastic processes related to quantum statistical mechanical systems on CuntzKrieger algebras. We extend the eternal inflation model from the BruhatTits tree to quotients by padic Schottky groups, again using quantum statistical mechanics on graph algebras. (Abstract)
Previous 1  2  3  4  5  6  7  8  9  10 Next


HOME 
TABLE OF CONTENTS 
Introduction 
GENESIS VISION 
LEARNING PLANET 
ORGANIC UNIVERSE 