(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VI. Life’s Cerebral Cognizance Becomes More Complex, Smarter, Informed, Proactive, Self-Aware

C. Personal Agency and Adaptive Behavior in Supportive Societies.

Wendt, Stephanie and Tomer Czaczkes. Individual Ant Workers Show Self-control. Biology Letters. 13/10, 2017. University of Regensburg, Animal Comparative Economics Lab researchers quantify that even social insects seem to have a modicum of autonomous behavior and contextual awareness. A group, flock, colony interplay of beneficial cohesion along with and maintained by freely active members continues to be nature’s most effective resort of reciprocal me + We = US community.

Self-control can allow humans and animals to improve resource intake under such conditions. Self-control in animals is often investigated using intertemporal choice tasks—choosing a smaller reward immediately or a larger reward after a delay. However, little is still known about self-control in invertebrates. Here, we investigate self-control in the black garden ant Lasius niger. We confront individual workers with a spatial discounting task, offering a high-quality reward far from the nest and a poor-quality reward closer to the nest. Most ants (69%) successfully ignored the closer, poorer reward in favour of the further, better one. However, when both the far and the close rewards were of the same quality, most ants (83%) chose the closer feeder, indicating that the ants were indeed exercising self-control, as opposed to a fixation on an already known food source. (Abstract)

West, Stuart, et al. Major Evolutionary Transitions in Individuality. Proceedings of the National Academy of Sciences. 112/10112, 2015. A paper for the 2014 NAS Sackler Colloquium entitled Symbioses Becoming Permanent: The Origins and Evolutionary Trajectories of Organelles about confirmations of life’s communal emergence as due to pervasive symbiotic unions. In accord with Eors Szathmary’s presentation at this meeting (search), this nested, manifest scale could be seen as regnant, liberated persons in relative communities. See also in the Science journal Evolving New Organisms via Symbiosis by Toby Kiers and Stuart West (348/392, 2015) and How Single Cells Work Together by Jonathan Zehr (349/1163, 2015).

The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven’t taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved. (Abstract)

Whiten, Andrew, et al. The Emergence of Collective Knowledge and Cumulative Culture in Animals, Humans, and Machines. Philosophical Transactions of the Royal Society B. December, 2021. University of St. Andrews, Oxford, Sorbonne, and Edinburgh editors introduce a special issue of 18 papers in advance of a Royal Society meeting in March 2022. The event (Google) is being held because these two subject fields now appear to be converging into a common, reinforcing synthesis. Typical entries are Human Cumulative Culture and the Exploitation of Natural Phenomena, When does Cultural Evolution become Cumulative Culture, Paradox of Diversity in the Collective Brain and The Origins of Human Cumulative Culture: From Foraging Niche to Collective Intelligence, by notables such as Ida Momennejad, Michael Tomasello and Simon Kirby (search each). St. Andrews was founded in 1413. Some six centuries later, may a worldwise sapiensphere at last close on itself so to reach a grand discovery of wuman and uniVerse?

The goal of this themed issue and meeting is to review and join the title topics whose research fields which have coalesced in recent years. One aspect is concerned with collective action, intelligence and knowledge among groupings which is much more is than any one alone. Some prior notations are consensus decision-making, quorum sensing, wisdom of the crowd, collective brain, group cognition and extended mind. The second interest covers the evolutionary emergence and evolution of their cultural content - the creation and spread of social traditions through communal learning processes. Culture has long been seen as a defining feature of humans. Yet, recent research has have revealed that intergroup culture plays a significant role for many vertebrate taxa and onto invertebrate insects. (Introduction excerpt)

Zimmer, Carl. Expressing Our Individuality, the Way E. Coli Do. New York Times. April 22, 2008. A Science Tuesday report that even for the simplest forms of life such as microbial colonies, individual bacteria are not insensate clones but seem to possess an ability to respond and act in their own, independent ways.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8