(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape

I. Our EarthMost Distinction: A Rarest Planetary Confluence of Life in Person Favorable Conditions

Macdonald, Evelyn, et al. Climate Uncertainties Caused by Unknown Land Distribution on Habitable M-Earths. arXiv:2110.04310. (M-Earth denotes an exoplanet with a Mass similar to our own) University of Toronto astrophysicists find the wide range of possible land and ocean ratios, as they vary over time, to contribute still another contingent factor with regard to the presence of living, evolutionary systems.

A planet's surface conditions can significantly impact its environmental habitability. In this study, we use the 3D general circulation model ExoPlaSim to vary dayside land cover on a rotating, temperate rocky planet under two opposite continent extremes whence all the land or all the ocean is centred at the substellar point. We identify water vapour and sea ice as climate drivers, and isolate land-dependent regimes under which case rules. We find that the amount and configuration of land can change a planet’s average surface temperature by up to 20K, and its atmospheric water content by orders of magnitude. (Abstract excerpt)

Martin, David. Populations of Planets in Multiple Star Systems. arXiv:1802.08693. In a chapter for the Handbook of Exoplanets (September 2018), a Swiss National Science Foundation Fellow at the University of Chicago gathers latest findings that find orbital worlds in a vicinity of two or more suns with as fairly common, maybe up to half of galactic cases. The situation is seen as an exotic example of nature’s ubiquitous diversity. It is then generally surmised that such a chaotic solar and planetary arrangements are not favorable, indeed ruinous, for long life term habitability.

Martin, Rebecca and Mario Livio. Asteroids and Life: How Special is the Solar System?. arXiv:2202.01352. University of Nevada cosmobiologists consider still another celestial anomaly which may have played a part in the occasion and course of life’s evolutionary development. As the Abstract notes, our collaborative sapiensphere continues to quantify parameters which could have affected relative environmental conditions. In this case, a certain amount of meteoric contacts seems to be a vital gradient.

Asteroid impacts with the Earth may have played an essential role in the emergence of life through their creation of favorable niches, favorable atmospheres and the delivery of water. Consequently, we suggest two potential requirements for exoplanetary life: first, that the system has an asteroid belt, and second, a mechanism to drive asteroids to impact the exoterrestrial habitable planet. Since in the solar system, the ν6 secular resonance is involved in driving these impacts, we explore how the giant planets affect this property. Hence the solar system is somewhat special, but the degree of fine-tuning that may be necessary for the emergence of life is not excessive. (Abstract)

Mathews, Freya. Moral Ambiguities in the Politics of Climate Change. Nanda, Ved, ed.. Climate Change and Environmental Ethics. New Brunswick, NJ: Transaction Publishers, 2011. Two decades after her visionary The Ecological Self work about individual and cosmic self-realization (search), the Australian ecophilosopher continues to meld “anthropocentric and biocentric” options in a viable, creative synthesis. Along with the quotes, she advises a “bio-synergy,” a “relational inter-functionality” of persons and planet, little self and Big self, as each engaged in a deep process of psychic individuation.

I would like to propose two ways – both holistic, but differently so – in which “nature” under its global aspect might be conceived. The first such way in which nature might be conceived is as a self-realizing or autopoetic system, defined not in terms of the elements that contingently constitute it, but in terms of its ends as an entity in its own right, which is to say, in terms of its status as an end-for-itself, and its disposition to navigate circumstances in such a way as to preserve its own identity as a living system through time and change. (48)

The second way in which nature under its global aspect might be (holistically) conceived is as a self-realizing or autopoietic system, yes, but one which is defined not merely in terms of its ends – the end of self-preservation – but also in terms of its specific pattern of organization, its pattern of self-structuration. The moral significance of nature under its global aspect, from this point of view, lies as much in this pattern of self-structuration as in its status as an end-for-itself. In protecting it, we would not only preserve its physical continuity through time and change, but its particular organizational integrity as well. (48-49)

McIntyre, Sarah, et al. Planetary Magnetism as a Parameter in Exoplanet Habitability. arXiv:1903.03123. Australian National University astrophysics including Charles Lineweaver proceed to add another physical, geologic factor which could influence whether a globular, orbital object might harbor living systems and an evolutionary intelligence. As the abstract says, a certain range of values are required to maintain conducive watery and airy conditions.

Evidence from the solar system suggests that, unlike Venus and Mars, the presence of a strong magnetic dipole moment on Earth has helped maintain liquid water on its surface. Therefore, planetary magnetism could have a significant effect on the long-term maintenance of atmosphere and liquid water on rocky exoplanets. We use Olson and Christensen's (2006) model to estimate magnetic dipole moments of rocky exoplanets with radii Rp ≤ 1.23 R⊕. Even when modelling maximum magnetic dipole moments, only Kepler-186 f has a magnetic dipole moment larger than the Earth's, while approximately half of rocky exoplanets detected in the circumstellar habitable zone have a negligible magnetic dipole moment. This suggests that planetary magnetism is an important factor when prioritizing observations of potentially habitable planets. (Abstract)

Mills, Daniel A., et al. A reassessment of the "hard-steps" model for the evolution of intelligent life. arXiv:2408.10293. As the major evolutionary transitions scale gains a central theoretic role, DM, Maximilians-Universität München, Adam Frank, University of Rochester, Jennifer Macalady and Jason Wright, Center for Habitable Worlds, Penn State consider how its sequential stages might play out on candidate exoplanets. Braced by some 200 references, their likelihood or difficulty, relative rates of passage, and so on are seen as paramount, check point factors. In a wider scan, we should note that life’s capricious development is yet now tacitly seen as an oriented emergence on its course to our personsphere sapience. See also Catastrophe risk can accelerate unlikely evolutionary transitions by Andrew Snyder-Beattie and Michael Bonsall in the Proceedings of the Royal Society B (March 2022) wherein Oxford University zoologists offer more thoughts on major transitions as a crucial aspect of the perilous ascent.

According to the "hard-steps" model, the origin of humanity required a successful passage through intermediate steps that were improbable within the time available for biological evolution on Earth. This scheme similarly predicts that technological life is "exceedingly rare" in the universe. In light of recent scientific findings, we enter an alternative where there are no hard steps, nor novelties required for human origins. If Earth's surface environment was initially inhospitable to vital earlier steps in human evolution (eukaryotic cells, animals), then the "delay" in the appearance of humans might be explained through a sequential opening of global habitability environs, with humanity arising quickly once the right conditions were in place. (Excerpt)

Milner, Yuri. Are We Alone?. www.breakthroughinitiatives.org/AreWeAlone. On a site for the Breakthrough Initiatives project launched and funded by the Russian entrepreneur, and physicist, this page exhorts that in a galactic cosmos now known to be filled with habitable planets, it is of ultimate import whether our precious bioworld is uniquely aware, or do we have myriad neighbors. It is endorsed by many luminaries such as Stephen Hawking, Martin Rees, Jill Tarter, Nikolay Kardashev, Sara Seager, and Kip Thorne. Another endeavor is Breakthrough Starshot, more below, to scope out and initiate the sending of probes to Alpha Centuri, the closest star to our sun. The announcement was on the nightly news, and in the NY Times for April 12, 2016 as Reaching for the Stars, Across 4.37 Light-Years by Dennis Overbye.

Who are we? A mature civilization, like a mature individual, must ask itself this question. Is humanity defined by its divisions, its problems, its passing needs and trends? Or do we have a shared face, turned outward to the Universe? Because the biggest questions of our existence are at stake. Are we the Universe’s only child - our thoughts its only thoughts? Or do we have cosmic siblings - an interstellar family of intelligence? There are likely billions of earth-like worlds in our galaxy alone. And with instruments now or soon available, we have a chance of finding out if any of these planets are true Pale Blue Dots – home to water, life, even minds.

There has never been a better moment for a large-scale international effort to find life in the Universe. As a civilization, we owe it to ourselves to commit time, resources, and passion to this quest. But as well as a call to action, this is a call to thought. Do we try to make contact with advanced civilizations? Who decides? Individuals, institutions, corporations, or states? Or can we as species - as a planet - think together? The 20th century will be remembered for our travels within the solar system. With cooperation and commitment, the present century will be the time when we graduate to the galactic scale, seek other forms of life, and so know more deeply who we are. (Search excerpts)

We are here. Circling one star among hundreds of billions, in one galaxy among a hundred billion more, in a Universe that is vast and expanding ever faster. In the granular details of daily life, it’s easy to forget that we live in a place of astonishing grandeur and mystery. The Breakthrough Initiatives are a program of scientific and technological exploration, probing the big questions of life in the Universe: Are we alone? Are there habitable worlds in our galactic neighborhood? Can we make the great leap to the stars? And can we think and act together – as one world in the cosmos? The Breakthrough Initiatives were founded in 2015 by Yuri and Julia Milner to explore the Universe, seek scientific evidence of life beyond Earth, and encourage public debate from a planetary perspective. Breakthrough Starshot is a $100 million research and engineering program aiming to demonstrate proof of concept for a new technology, enabling ultra-light unmanned space flight at 20% of the speed of light; and to lay the foundations for a flyby mission to Alpha Centauri within a generation. (Project statement)

Milojevic, I. and S. Inayatullah. Futures Dreaming Outside and on the Margins of the Western World. Futures. 35/5, 2003. An argument that the vast genre of science fiction is largely written by white males who are preoccupied with war between binary opposites. Non-western, indigenous writers, especially women, are noted to be in search of alternative, less-combatant, holistically peaceful and creative visions.

Moore, Keavin, et al.. Water Evolution & Inventories of Super-Earths Orbiting Late M-Dwarfs. arXiv:2406.19923. As astronomic techniques become ever more sophisticated, Earth & Planetary Sciences, McGill University exoplanet researchers including Nicolas Cowen can come up with one more feature that will seriously affect long-term habitability. As the quote says, a finely-nuanced zone is found between all wet or bone dry conditions.

Super-Earths orbiting M-dwarf stars may be the most common habitable planets in the Universe. However, their habitability is threatened by intense irradiation from their host stars, which drives water to escape to space. We present a box model of water cycling and evaporation for terrestrial planets of mass 1--8 M⊕ orbiting in the habitable zone of a late M-dwarf. Planets with more water become flooded, while those with less have desiccated surfaces. A super-Earth at the inner edge of a habitable zone tends to end up as either a waterworld or dry desert; only a narrow range of initial water inventory yields an Earth-like land-sea-air abide. (Abstract)

Morbidelli, Alessandro and Sean Raymond. Challenges in Planet Formation. arXiv:1610.07202.. Universite de Nice Sophia-Antipoli, and CNRS, Laboratoire d'Astrophysique de Bordeau astrophysicists provide a latest update about how object worlds might have formed. As we report this active literature, an auspicious realization is that our own solar system is a rarest case (one in a thousand herein) with a relatively benign, long lived conducive order. A philosophical reflection ought to note how incredible it is that a global sapience can look back and reconstruct how this special planet and people came to be.

Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are: 1) the structure and evolution of protoplanetary disks; 2) the growth of the first planetesimals; 3) orbital migration driven by interactions between proto-planets and gaseous disk; 4) the origin of the Solar System's orbital architecture; and 5) the relationship between observed super-Earths and our own terrestrial planets. (Abstract)

The origin of planets is a vast, complex and still quite mysterious subject. Despite decades
of space exploration, ground based observations and detailed analyses of meteorites and cometary grains it is still not clear how the planets of the Solar System formed. The discovery of extrasolar planets has added confusion to the problem, bringing to light evidence that planetary systems are very diverse, that our Solar System is not a typical case and that categories of planets that don't exist in our system are common elsewhere (e.g. the super-Earth planets). (2)

Just like any individual person, the Solar System has its own history. The probability of any other planetary system following an identical blueprint is zero. But how typical was the Solar System's evolutionary path? Based on statistically-sound exoplanet observational surveys, the Sun-Jupiter system is special at roughly the level of one in a thousand. First, the Sun is an unusually massive star; the most common type of star are M dwarfs, with masses of 10-50% of the Sun's. Second, only 10% of Sun-like stars have gas giant planets with orbits shorter than a few to 10 AU. Third, only about 10% of giant exoplanets have orbits wider than 1 AU and eccentricities smaller than 0.1. Taken together, these constraints suggest the Sun-Jupiter system is a 0.1% case. The numbers quoted here are a simple order of magnitude, but they clearly illustrate that the Solar System is not a typical case in at least one regard: the presence and orbit of Jupiter. (20)

Morbidelli, Alessandro, et al. Topical Collection on the Delivery of Water to Proto-Planets, Planets and Satellites. Space Science Reviews. 214/7, 2018. Eleven editors including Sean Raymond and Helmut Lammer introduce a special issue with this title about the occurrence, locales, and quantities of life’s ultimate biochemical through galactic, solar and planetary ages. Click on the issue citation for papers such as The Importance of Water for Life by Frances Westall and Andre Brack, The Delivery of Water during Terrestrial Planet Formation by David O.Brien, et al, Water in the Earth’s Interior by Anne Peslier, et al, and Water in Extrasolar Planets and Implications for Habitability by Lena Noack, et al.

To stay with this vital aspect, see for example The Role of Deep-Earth Water Cycling in the Growth and Evolution of Continental Crust by Zhen Li, et al in Lithos (302-303/126, 2018), Origin of Earth’s Water by Jun Wu, et al in Journal of Geophysical Research: Planets (online October 2018), A Nearly Water-Saturated Mantle Transition Zone by Hongzhan Fei, et al in Sciences Advances (June 2017) and Exoplanet Science Priorities form the Perspective of Internal and Surface Processes for Silicate and Ice Dominated Worlds by Wade Henning, et al at arXiv:1804.05094. By these entries and more, a natural genesis ecosmos seems to be present on its independent own and innately vivified so as to give rise to life, evolutionary, intelligence, this global retrospect and our procreative continuation.

Mullan, Brendan and Jacob, Haqq-Misra. Population Growth, Energy Use, and the Implications for the Search for Extraterrestrial Intelligence. Futures. 106/4, 2019. In a special Detectability of Future Earth issue edited by J H-M, Blue Marble Space Institute of Science scholars reconsider a classic 1975 prediction (see Abstract) about the global fate and cosmic future of human sapiens. A half-century later, a terminal moment has indeed been reached which will drastically affect everything as we know it. A litany of familiar calamities from climate gases, resources, epidemics, AI impacts, and so on are tabulated, for which we are in denial, let alone do anything about. The paper closes with a dour view that an inability to stabilize and sustain one’s planetary civilization may answer Fermi’s question Where Are They? about the absence of ETs. They are no longer in existence because they could not save themselves.

In a 1975 paper Population Explosion and Interstellar Expansion, (J. British Interplanetary Society, 28/691, hereafter VH75) Sebastian Von Hoerner examined the effects of human population growth and agricultural, environmental, and other consequences from observed growth trends. Using straightforward calculations, VH75 predicted the “doomsday” years of 2020-2050 for these scenarios when we as a species should run out of space or food, or induce catastrophic anthropogenic climate change through thermodynamically direct heating of the planet. Now that over four decades have passed, in this paper we update VH75. We perform similar calculations as that work, with improved data and trends in population growth, food production, energy use, and climate change.

We find that, if historic trends continue, direct heating of the Earth will be a substantial contributor to climate change by ~2260, regardless of the energy source used, coincident with our transition to a Kardashev type-I civilization. We also determine that either an increase of Earth’s global mean temperature will occur or an unreasonably high fraction of the planet will need to be covered by solar collectors by ∼2400 to keep pace with our growth in energy use. We further discuss the implications in terms of interstellar expansion, the transition to type II and III civilizations, SETI, and the Fermi Paradox. We conclude that the “sustainability solution” to the Fermi Paradox is a compelling possibility. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]