|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator LifescapeI. Our EarthMost Distinction: A Rarest Planetary Confluence of Life in Person Favorable Conditions Macdonald, Evelyn, et al. Climate Uncertainties Caused by Unknown Land Distribution on Habitable M-Earths. arXiv:2110.04310. (M-Earth denotes an exoplanet with a Mass similar to our own) University of Toronto astrophysicists find the wide range of possible land and ocean ratios, as they vary over time, to contribute still another contingent factor with regard to the presence of living, evolutionary systems. A planet's surface conditions can significantly impact its environmental habitability. In this study, we use the 3D general circulation model ExoPlaSim to vary dayside land cover on a rotating, temperate rocky planet under two opposite continent extremes whence all the land or all the ocean is centred at the substellar point. We identify water vapour and sea ice as climate drivers, and isolate land-dependent regimes under which case rules. We find that the amount and configuration of land can change a planet’s average surface temperature by up to 20K, and its atmospheric water content by orders of magnitude. (Abstract excerpt) Martin, David. Populations of Planets in Multiple Star Systems. arXiv:1802.08693. In a chapter for the Handbook of Exoplanets (September 2018), a Swiss National Science Foundation Fellow at the University of Chicago gathers latest findings that find orbital worlds in a vicinity of two or more suns with as fairly common, maybe up to half of galactic cases. The situation is seen as an exotic example of nature’s ubiquitous diversity. It is then generally surmised that such a chaotic solar and planetary arrangements are not favorable, indeed ruinous, for long life term habitability. Martin, Rebecca and Mario Livio. Asteroids and Life: How Special is the Solar System?. arXiv:2202.01352. University of Nevada cosmobiologists consider still another celestial anomaly which may have played a part in the occasion and course of life’s evolutionary development. As the Abstract notes, our collaborative sapiensphere continues to quantify parameters which could have affected relative environmental conditions. In this case, a certain amount of meteoric contacts seems to be a vital gradient. Asteroid impacts with the Earth may have played an essential role in the emergence of life through their creation of favorable niches, favorable atmospheres and the delivery of water. Consequently, we suggest two potential requirements for exoplanetary life: first, that the system has an asteroid belt, and second, a mechanism to drive asteroids to impact the exoterrestrial habitable planet. Since in the solar system, the ν6 secular resonance is involved in driving these impacts, we explore how the giant planets affect this property. Hence the solar system is somewhat special, but the degree of fine-tuning that may be necessary for the emergence of life is not excessive. (Abstract) Mathews, Freya. Moral Ambiguities in the Politics of Climate Change. Nanda, Ved, ed.. Climate Change and Environmental Ethics. New Brunswick, NJ: Transaction Publishers, 2011. Two decades after her visionary The Ecological Self work about individual and cosmic self-realization (search), the Australian ecophilosopher continues to meld “anthropocentric and biocentric” options in a viable, creative synthesis. Along with the quotes, she advises a “bio-synergy,” a “relational inter-functionality” of persons and planet, little self and Big self, as each engaged in a deep process of psychic individuation. I would like to propose two ways – both holistic, but differently so – in which “nature” under its global aspect might be conceived. The first such way in which nature might be conceived is as a self-realizing or autopoetic system, defined not in terms of the elements that contingently constitute it, but in terms of its ends as an entity in its own right, which is to say, in terms of its status as an end-for-itself, and its disposition to navigate circumstances in such a way as to preserve its own identity as a living system through time and change. (48) McIntyre, Sarah, et al. Planetary Magnetism as a Parameter in Exoplanet Habitability. arXiv:1903.03123. Australian National University astrophysics including Charles Lineweaver proceed to add another physical, geologic factor which could influence whether a globular, orbital object might harbor living systems and an evolutionary intelligence. As the abstract says, a certain range of values are required to maintain conducive watery and airy conditions. Evidence from the solar system suggests that, unlike Venus and Mars, the presence of a strong magnetic dipole moment on Earth has helped maintain liquid water on its surface. Therefore, planetary magnetism could have a significant effect on the long-term maintenance of atmosphere and liquid water on rocky exoplanets. We use Olson and Christensen's (2006) model to estimate magnetic dipole moments of rocky exoplanets with radii Rp ≤ 1.23 R⊕. Even when modelling maximum magnetic dipole moments, only Kepler-186 f has a magnetic dipole moment larger than the Earth's, while approximately half of rocky exoplanets detected in the circumstellar habitable zone have a negligible magnetic dipole moment. This suggests that planetary magnetism is an important factor when prioritizing observations of potentially habitable planets. (Abstract) Mills, Daniel A., et al. A reassessment of the "hard-steps" model for the evolution of intelligent life. arXiv:2408.10293. As the major evolutionary transitions scale gains a central theoretic role, DM, Maximilians-Universität München, Adam Frank, University of Rochester, Jennifer Macalady and Jason Wright, Center for Habitable Worlds, Penn State consider how its sequential stages might play out on candidate exoplanets. Braced by some 200 references, their likelihood or difficulty, relative rates of passage, and so on are seen as paramount, check point factors. In a wider scan, we should note that life’s capricious development is yet now tacitly seen as an oriented emergence on its course to our personsphere sapience. See also Catastrophe risk can accelerate unlikely evolutionary transitions by Andrew Snyder-Beattie and Michael Bonsall in the Proceedings of the Royal Society B (March 2022) wherein Oxford University zoologists offer more thoughts on major transitions as a crucial aspect of the perilous ascent. According to the "hard-steps" model, the origin of humanity required a successful passage through intermediate steps that were improbable within the time available for biological evolution on Earth. This scheme similarly predicts that technological life is "exceedingly rare" in the universe. In light of recent scientific findings, we enter an alternative where there are no hard steps, nor novelties required for human origins. If Earth's surface environment was initially inhospitable to vital earlier steps in human evolution (eukaryotic cells, animals), then the "delay" in the appearance of humans might be explained through a sequential opening of global habitability environs, with humanity arising quickly once the right conditions were in place. (Excerpt) Milner, Yuri. Are We Alone?. www.breakthroughinitiatives.org/AreWeAlone. On a site for the Breakthrough Initiatives project launched and funded by the Russian entrepreneur, and physicist, this page exhorts that in a galactic cosmos now known to be filled with habitable planets, it is of ultimate import whether our precious bioworld is uniquely aware, or do we have myriad neighbors. It is endorsed by many luminaries such as Stephen Hawking, Martin Rees, Jill Tarter, Nikolay Kardashev, Sara Seager, and Kip Thorne. Another endeavor is Breakthrough Starshot, more below, to scope out and initiate the sending of probes to Alpha Centuri, the closest star to our sun. The announcement was on the nightly news, and in the NY Times for April 12, 2016 as Reaching for the Stars, Across 4.37 Light-Years by Dennis Overbye. Who are we? A mature civilization, like a mature individual, must ask itself this question. Is humanity defined by its divisions, its problems, its passing needs and trends? Or do we have a shared face, turned outward to the Universe? Because the biggest questions of our existence are at stake. Are we the Universe’s only child - our thoughts its only thoughts? Or do we have cosmic siblings - an interstellar family of intelligence? There are likely billions of earth-like worlds in our galaxy alone. And with instruments now or soon available, we have a chance of finding out if any of these planets are true Pale Blue Dots – home to water, life, even minds. Milojevic, I. and S. Inayatullah. Futures Dreaming Outside and on the Margins of the Western World. Futures. 35/5, 2003. An argument that the vast genre of science fiction is largely written by white males who are preoccupied with war between binary opposites. Non-western, indigenous writers, especially women, are noted to be in search of alternative, less-combatant, holistically peaceful and creative visions. Moore, Keavin, et al.. Water Evolution & Inventories of Super-Earths Orbiting Late M-Dwarfs. arXiv:2406.19923. As astronomic techniques become ever more sophisticated, Earth & Planetary Sciences, McGill University exoplanet researchers including Nicolas Cowen can come up with one more feature that will seriously affect long-term habitability. As the quote says, a finely-nuanced zone is found between all wet or bone dry conditions. Super-Earths orbiting M-dwarf stars may be the most common habitable planets in the Universe. However, their habitability is threatened by intense irradiation from their host stars, which drives water to escape to space. We present a box model of water cycling and evaporation for terrestrial planets of mass 1--8 M⊕ orbiting in the habitable zone of a late M-dwarf. Planets with more water become flooded, while those with less have desiccated surfaces. A super-Earth at the inner edge of a habitable zone tends to end up as either a waterworld or dry desert; only a narrow range of initial water inventory yields an Earth-like land-sea-air abide. (Abstract) Morbidelli, Alessandro and Sean Raymond. Challenges in Planet Formation. arXiv:1610.07202.. Universite de Nice Sophia-Antipoli, and CNRS, Laboratoire d'Astrophysique de Bordeau astrophysicists provide a latest update about how object worlds might have formed. As we report this active literature, an auspicious realization is that our own solar system is a rarest case (one in a thousand herein) with a relatively benign, long lived conducive order. A philosophical reflection ought to note how incredible it is that a global sapience can look back and reconstruct how this special planet and people came to be. Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are: 1) the structure and evolution of protoplanetary disks; 2) the growth of the first planetesimals; 3) orbital migration driven by interactions between proto-planets and gaseous disk; 4) the origin of the Solar System's orbital architecture; and 5) the relationship between observed super-Earths and our own terrestrial planets. (Abstract)
Morbidelli, Alessandro, et al.
Topical Collection on the Delivery of Water to Proto-Planets, Planets and Satellites.
Space Science Reviews.
214/7,
2018.
Eleven editors including Sean Raymond and Helmut Lammer introduce a special issue with this title about the occurrence, locales, and quantities of life’s ultimate biochemical through galactic, solar and planetary ages. Click on the issue citation for papers such as The Importance of Water for Life by Frances Westall and Andre Brack, The Delivery of Water during Terrestrial Planet Formation by David O.Brien, et al, Water in the Earth’s Interior by Anne Peslier, et al, and Water in Extrasolar Planets and Implications for Habitability by Lena Noack, et al. Mullan, Brendan and Jacob, Haqq-Misra. Population Growth, Energy Use, and the Implications for the Search for Extraterrestrial Intelligence. Futures. 106/4, 2019. In a special Detectability of Future Earth issue edited by J H-M, Blue Marble Space Institute of Science scholars reconsider a classic 1975 prediction (see Abstract) about the global fate and cosmic future of human sapiens. A half-century later, a terminal moment has indeed been reached which will drastically affect everything as we know it. A litany of familiar calamities from climate gases, resources, epidemics, AI impacts, and so on are tabulated, for which we are in denial, let alone do anything about. The paper closes with a dour view that an inability to stabilize and sustain one’s planetary civilization may answer Fermi’s question Where Are They? about the absence of ETs. They are no longer in existence because they could not save themselves. In a 1975 paper Population Explosion and Interstellar Expansion, (J. British Interplanetary Society, 28/691, hereafter VH75) Sebastian Von Hoerner examined the effects of human population growth and agricultural, environmental, and other consequences from observed growth trends. Using straightforward calculations, VH75 predicted the “doomsday” years of 2020-2050 for these scenarios when we as a species should run out of space or food, or induce catastrophic anthropogenic climate change through thermodynamically direct heating of the planet. Now that over four decades have passed, in this paper we update VH75. We perform similar calculations as that work, with improved data and trends in population growth, food production, energy use, and climate change.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |