(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape

2. A Consilience as Physics, Biology and People Become One

Provata, Astero, et al. DNA Viewed as an Out-of-Equilibrium Structure. Physical Review E. 89/052105, 2014. Reviewed more in Genome Complex Systems as a good example of an integral synthesis of life and law.

Pruessner, Gunnar. Complex Systems, Non-Equilibrium Dynamics and Self-Organization. Entropy. Online January, 2017. The Imperial College London mathematician invites papers for a Special mid 2017 Issue on this subject phenomena. We record because its description note Active Matter as an exemplary instance.

Over the last two decades or so, the notion of complex systems has found its way into many different areas of science and humanities, allowing for a quantitative understanding of phenomena that were traditionally studied in a more qualitative fashion. A particularly attractive aspect of complex systems is the emergence of co-operative phenomena, or self-organisation, often driven by non-equilibrium dynamics that relies on an external (energy) source. Such systems seem to be all around us, and govern and represent all that we do and are. Particular interest in self-organisation and non-equilibrium systems in the form of "active matter" has been generated within the biological sciences with the continued emphasis of more quantitative methods. Pattern or tissue formation may be a particularly good example of a phenomenon suitable for the present issue. Other good examples may be entropy production in sociological and financial systems or recent developments in self-organised criticality.

Ramaswamy, Sriram. The Mechanics and Statistics of Active Matter. Annual Review of Condensed Matter Physics. 1/323, 2010. The Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore, biophysicist introduces the concept of “active matter” to represent novel appreciations, as the quotes say, of a natural materiality suffused by its own internal agency and dynamic motion. The phrase has gained currency in such 2013 writings by Cristina Marchetti, et al and Mark Buchanan (search each).

Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behaviour of collections of active particles -- active matter -- with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogues. (Abstract)

The viewpoint of this review is that living matter can fruitfully be regarded as a kind of material and studied using the tools of condensed matter physics and statistical mechanics; that there is a practical way to encode into such a description those features of the living state that are relevant to materials science; and that the results of such an endeavour will help us better understand, control and perhaps mimic active cellular matter. (325).

A comprehensive theory of this ubiquitous type of condensed matter is a natural imperative for the physicist, and should yield a catalogue of the generic behaviours, such as nonequilibrium phases and phase transitions, the nature of correlations and response, and characteristic instabilities. Second, therefore, the generic tendencies emerging from the theory of active matter, unless suppressed by specific mechanisms, must arise in vivo, which is why biologists should care about it. (325-326) The reader should keep in mind that theories of active matter were formulated not in response to a specific puzzle posed by experiments but rather to incorporate living, metabolizing, spontaneously moving matter into the condensed-matter fold. (326)

Riiska, Calvin, et al. The Physics of Animal Behavior: Form, Function, and Interactions. Annual Review of Condensed Matter Physics. Volume 13, 2024. In this latest chapter Emory University and University of Colorado biophysicists including Orit Peleg contribute to a current consilience of nonlinear complex system phenomena as it becomes amenable to and reflective of, in this exemplary case, with a deep physical source.

Understanding the physics of behavior in animals that has lately gained much attention. As a result, in this review we delve into the intricate temporal and spatial scales for both individual members and collective assemblies. Our work involves experimental and theoretical approaches which highlight the importance of feedback loops, emergent behavior, and environmental factors. Novel technologies such as high-speed imaging and tracking can then be used to validate physics-based models of complex 3D network dynamics across many species. We also consider applications in artificial intelligence, identify new areas for study, and envision further breakthroughs that reveal nature’s clever, cooperative behavioral repertoire. (Excerpt)

Rossi, Paolo. Surname Distribution in Population Genetics and in Statistical Physics. Physics of Life Reviews. Online June, 2013. As the Abstract notes, a University of Pisa physicist finds parallels between a person’s family name, genomic sources, and onto condensed material phenomena. We enter as an example of a growing incidence of such studies that draw common correspondences from disparate physical realms to personal lives. A further reason, as many entries attest, is a recognition of a mathematical domain that, unbeknownst, underlies, guides, channels, our individual and collective days and destinies, see herein Callegari about migrations, and Bohorquez about insurgencies.

Surnames tend to behave like neutral genes, and their distribution has attracted a growing attention from geneticists and physicists. We review the century-long history of surname studies and discuss the most recent developments. Isonymy has been regarded as a tool for the measurement of consanguinity of individuals and populations and has been applied to the analysis of migrations. The analogy between patrilineal surname transmission and the propagation of Y chromosomes has been exploited for the genetic characterization of families, communities and control groups. Surname distribution is the result of a stochastic dynamics, which has been studied either as a Yule process or as a branching phenomenon: both approaches predict the asymptotic power-law behavior which has been observed in many empirical researches. Models of neutral evolution based on the theory of disordered systems have suggested the application of field-theoretical techniques, and in particular the Renormalization Group, to describe the dynamics leading to scale-invariant distributions and to compute the related (critical) exponents. (Abstract)

Rosso, Osvaldo, et al. Topics on Non-Equilibrium Statistical Mechanics and Nonlinear Physics II. Philosophical Transactions of the Royal Society A. 373/Iss. 2056, 2015. An introduction to papers from a 2014 conference in Brazil on these concerns, Google “Medyfinol” for info. Among the contributions is Causal Information Quantification of Prominent Dynamical Features of Biological Neurons by Fernando Montani, et al, which can represent this union and cross-invigoration of emergent persons able to learn this with a conducive physical materiality.

The research in non-equilibrium statistical mechanics and nonlinear physics is a scientific approach to the investigation of how relationships between parts give rise to the collective behaviour of a system, and how the system interacts and forms relationships with its environment. Such problems are tackled, mostly with new concepts and tools related to information theory, statistical mechanics and nonlinear dynamics. They aim at representing and understanding the organized albeit unpredictable behaviour of natural systems that are considered intrinsically complex. In fact, the exciting fields of complexity, chaos and nonlinear science have experienced impressive growth in recent decades. (Abstract)

Rotrattanadumrong, Rachapun and Robert Endres. Emergence of Cooperativity in a Model Bioflim. Journal of Physics D: Applied Physics. 50/234006, 2017. As the quotes say, Imperial College, London system biophysicists trace an insistent tendency even at this bacterial stage to get along with each other as a way to improve group survival benefits. See also a note added below about the Special Issue on Collective Behavior of Living Matter of which it is part edited by Ben Fabry, Daniel Zitterbart and R. Endres. And it well serves this section when a paper that joins microbes and physical phenomena can appear in a Physics journal.

Evolution to multicellularity from an aggregate of cells involves altruistic cooperation between individual cells, which is in conflict with Darwinian evolution. How cooperation arises and how a cell community resolves such conflicts remains unclear. In this study, we investigated the spontaneous emergence of cell differentiation and the subsequent division of labour in evolving cellular metabolic networks. In spatially extended cell aggregates, our findings reveal that resource limitation can lead to the formation of subpopulations and cooperation of cells, and hence multicellular communities. A specific example of our model can explain the recently observed oscillatory growth in Bacillus subtilis biofilms. (Abstract)

Biological systems are usually conceptualized as networks of interacting genes and proteins. Yet an analysis of genetic programs fails to explain higher-level functions such as multi-cellular aggregation, tissue organization, embryonic development, and collective behaviour of individuals. Such collective processes are often insensitive to microscopic details of the underlying system and are emergent properties that arise from the interactions between cells or individuals. In recent years, novel theoretical and experimental approaches have spurred the development of statistical models of complex biological systems and generated progress in our understanding of emergent collective processes in biology. (Special Issue)

Saclioglu, Cihan, et al. Group Behavior in Physical, Chemical and Biological Systems. Journal of Biosciences. 39/2, 2014. In an issue on Individuals and Groups (search S. Newman), biophysicists Saclioglu, Sabanci Universitesi, Istanbul with Onder Pekcan, Kadir Has Universitesi, Istanbul and Vidyanand Nanjundiah, Indian Institute of Science, Bangalore scope out how to situate and root in substantial nature, as must be the case, life’s persistent evolutionary formation of social assembles at each and every stage and instance. Section 2, for example, is Physical principles underlying collective behavior: Elementary particles and emergent macroscopic manifestations. Maybe in this Indian journal and milieu, an Eastern mind can better perceive how obvious this holistic unity must be. It goes on to a similar Group Behavior in Chemistry, Groups in Biology segment and more, altogether akin to 2017 papers by van Gestel/Tarnita and Sebe-Pedros, et al of a universal, independent recurrence from universe to us.

Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such ‘emergent’ properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck’s constant is discrete, not zero. Groups of molecules in solution, in particular polymers (‘sols’), can form viscous clusters that behave like elastic solids (‘gels’). Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. (Abstract excerpt)

Selesnick, Stephen, et al. Quantum-like Behavior without Quantum Physics. Journal of Biological Physics. Online July, 2017. As the Abstract notes, mathematician Selesnick, and physicist Gualtiero Piccinini, University of Missouri, with philosopher J. P. Rawling, Florida State University, consider ways that quantum effects, as they become better understood into the 21st century, can be noticed and quantified across classical phenomena such as neural activities.

Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy do not seem to survive much scrutiny. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. (Abstract)

Seoane, Luis. Fate of Duplicated Neural Structures. arXiv:2008.00531. The Barcelona systems theorist is presently a postdoc at MIT’s Center for Brains Minds + Machines (search LS and visit the CBMM site). After prior collaborations with Ricard Sole (see arXiv site) and others, he continues his project to give life’s evolutionary biology and cognition a deeper statistical and computational physics basis, as it necessarily has to have. His innovative 2020 entry is a good instance of this scientific frontier as it seeks to quantify and join human and universe into a unified organic genesis. Its sections course through bilateral hemispheres, reactive and/or predictive brains, cortical columns, active algorithms, linguistics and more as each form and move by an energetic flow. The 193 references over the 2000s and 2010s document a 21st century worldwise revolution from everything in pieces to altogether now. So this panicky year seems also a time of historic local, global and ecosmic synthesis which, if we could witness, read and avail might help mitigate and guide.

Statistical mechanics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism percolates throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored which yields life, cognition, and Darwinian evolution. Neurons and neural circuits then reside between statistical mechanics, computation, and cognitively in natural selection. A statistical physics theory of neural circuits would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions.

With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at central nervous systems with a stress on computational thresholds that might prompt this redundancy and at duplicated circuits for complex phenotypes. From this we derive phase diagrams and transitions between single and duplicated circuits, which constrain evolutionary paths that lead to complex cognition. Similar phase diagrams and transitions might constrain internal connectivity patterns of neural circuits at large. Thus the formalism of statistical mechanics seems a natural framework for this promising line of research. (Abstract)

Simpson, Kevin, et al. Spatial biology of Ising-like synthetic genetic networks. BMC Biology. 21/185, 2003. This contribution by Pontificia Universidad Católica de Chile, Santiago geneticists could exemplify the 2023 cross-discipline integrations as it at once cites theoretic reasons for complex genome systems which can now be seen to be deeply grounded in active physical principles. By so doing the whole dynamic operation is realized to embody a Ising model (see below) as it forms self-organizing fractal patterns.

Understandings of how spatial patterns of gene expression emerge from the interaction of individual gene networks remains a challenge in biology. We propose an experimental system with a theoretical framework that captures the emergence of short- and long-range correlation from interacting gene networks. Our method combines synthetic biology, statistical mechanics, and computational simulations to study the spatial behavior of synthetic gene networks. By this approach, we describe the spatial behavior of bi-stable and chemically coupled synthetic gene networks that self-organize into long-range correlations with power-law scalings. The resultant patterns are then found to resemble ferromagnetic and anti-ferromagnetic configurations of the Ising model near critical points. (Excerpt)

Here, we apply a theoretical framework based on the Ising model to study how spatial correlations emerge from chemically coupled, bistable SGNs in Escherichia coli colonies. Ww construct synthetic toggle switches whose states are based on quorum sensing signaling. These SGNs self-organize in long-range spatial correlations and fractal patterns reminiscent of ferromagnetic systems of the Ising model. (2)

Our findings shed light on the spatial biology of coupled and bistable gene networks in growing cell populations. This emergent spatial behavior could provide insights into the study and engineering of self-organizing gene patterns in eukaryotic tissues and bacterial consortia. (12)

The Ising model, after the physicist Ernst Ising, is a mathematical model of ferromagnetism in statistical mechanics. It consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states.

Siva, Karthnik, et al. Spin Glass Models of Syntax and Language Evolution. arXiv:1508.00504. We note this paper by Caltech mathematicians as a good example of the cosmic synthesis of physics and people, condensed matter and cultural discourse, a rooting of life and us in a fertile uniVerse. The Principles and Parameters model of Generative Linguistics due to Noam Chomsky is applied from Albanian to Zulu which leads to subject-verb language networks. If linguistics can be described by way of particles in relative motions, then this affinity would imply in turn that physical substance is literally textual in kind. The senior coauthor is Professor Matilde Marcolli. If there is any doubt that women can do STEM studies, check her website publications page where you will find work on Multifractals, Mumford Curves, Eternal Inflation and much more. For an April 2016 edition see her Syntactic Parameters and a Coding theory Perspective on Entropy and Complexity of Language Families paper in Entropy. And for even more see Semantic Spaces at 1605.0504238 and Syntactic Phylogenetic Trees at 1607.02791..

Using the SSWL database of syntactic parameters of world languages, and the MIT Media Lab data on language interactions, we construct a spin glass model of language evolution. We treat binary syntactic parameters as spin states, with languages as vertices of a graph, and assigned interaction energies along the edges. We study a rough model of syntax evolution, under the assumption that a strong interaction energy tends to cause parameters to align, as in the case of ferromagnetic materials. We also study how the spin glass model needs to be modified to account for entailment relations between syntactic parameters. This modification leads naturally to a generalization of Potts models with external magnetic field, which consists of a coupling at the vertices of an Ising model and a Potts model with q=3, that have the same edge interactions. We describe the results of simulations of the dynamics of these models, in different temperature and energy regimes. We discuss the linguistic interpretation of the parameters of the physical model. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next