![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
VII. Our Earthuman Ascent: A Major Evolutionary Transition in Twindividuality2. Systems Neuroscience: Multiplex Networks and Critical Function Kello, Christopher, et al. Scaling Laws in Cognitive Sciences. Trends in Cognitive Sciences. Online in Press,, 2010. Senior neuroscientists from the USA, UK, Spain, and Holland find a constant recurrence across neural, behavioral, and linguistic realms to such a degree as to imply a constant, fundamental order in living, complex systems. The same iteration occurs, e.g., in perception, action, memory, and word frequencies. As a consequence, this phenomena must be rooted in and spring from statistical physics principles such as criticality and phase transitions. Scaling laws are ubiquitous in nature, and they pervade neural, behavioral and linguistic activities. A scaling law suggests the existence of processes or patterns that are repeated across scales of analysis. Although the variables that express a scaling law can vary from one type of activity to the next, the recurrence of scaling laws across so many different systems has prompted a search for unifying principles. In biological systems, scaling laws can reflect adaptive processes of various types and are often linked to complex systems poised near critical points. The same is true for perception, memory, language and other cognitive phenomena. Findings of scaling laws in cognitive science are indicative of scaling invariance in cognitive mechanisms and multiplicative interactions among interdependent components of cognition. Kelso, J. A. Scott. An Essay on Understanding the Mind. Ecological Psychology. 20/2, 2008. The Florida Atlantic University cognitive systems wizard always has something to say, and this paper in the “Life and the Sciences of Complexity” series in honor of Arthur Iberall, is no exception. Starting with an historical glimpse at the early 1980s, one can glimpse a growing articulation of a deep affinity and synthesis of human and universe. The central thesis of this article can be stated bluntly: Minds, brains, and bodies, yours and mine, immersed as they are in their own worlds, both outside and inside, share a common underlying dynamics. (183) The remarkable developments of quantum mechanics demonstrating the essential complementarity of both light and matter should have ushered in not just a novel epistemology but a generalized complementary science. (185) Kelso, Scott. Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge: MIT Press, 1995. A comprehensive theory of cerebral development and cognitive function by way of nonlinear science with an emphasis on synergetic principles. Kelso, Scott and Emmanuelle Tognoli. Toward a Complementary Neuroscience: Metastable Coordination Dynamics of the Brain. Murphy, Nancey, et al, eds. Downward Causation and the Neurobiology of Free Will. Berlin: Springer, 2009. The Florida Atlantic University complexity scientist, with FAU research professor Tognoli, contribute to understandings of our cerebral faculty as a self-organizing system from local, semi-autonomous neural areas to their reciprocal integration into mindwide cognitive activity. To the corpus of work in this regard by Kelso and colleagues over some twenty years (search for writings) is added a “metastability” quality so as connect and root such phenomena with the latest physical theories. Individualist tendencies for diverse regions of the brain to express themselves coexist with coordinate tendencies to couple and cooperate as a whole. In the metastable brain, local and global processes coexist as a complementary pair, not as conflicting theories. (107-108) Kelso, Scott, et al. Outline of a General Theory of Behavior and Brain Coordination. Neural Networks. 37/1, 2013. Kelso, with coauthors Guillaume Dumas and Emmanuelle Tognoli, are Florida Atlantic University, Center for Complex Systems & Brain Sciences, researchers who explain how human brains are so dynamically self-composed, poised and intelligent. As neuroscientists Danielle Bassett, Stephen Grossberg, and others also aver, a prime cerebral quality is a reciprocal interplay between whole brain or area module coherences and nested scales of semi-autonomous neural nets. Several themes might then be gleaned. At the outset, a “neural choreography” motif is cited to express both dancers and score. A multi-level model is then deployed from single neurons and local field potentials to disparate regions, global integrations, and even inter-personal synchronies (search Dumas). Again this balance repeats at every range – independent in the small and a necessary lucidity in the large. A “Metastable Brain” is thus conceived, soon to be a 2014 book by the authors. Scott Kelso’s 2006 The Complementary Nature, with Dennis Engstrom (whom emailed me to say my review was one of the best appreciations of their work) offers a luminous survey. See also “Enlarging the Scope: Grasping Brain Complexity” by Tognoli and Kelso at arXiv: 1310.7277 (October 2013). So akin to Scott Gilbert’s symbiotic organisms and everywhere else, nature’s “me + We = US” mutual viability holds once more.
Keysers, Christian, et al. Studies of coding for the actions and emotions of others and its deficits in autism spectrum disorder. Neuroscience & Biobehavioral. Neuroscience & Biobehavioral Reviews. 167/105877, 2024. Netherlands Institute for Neuroscience and University of Vienna neuroresearchers including Valeria Gazzola suggest ways to update and expand these vital studies by way of new iterative psychological methods. Traditionally, the neural basis of social perception has been studied by showing participants examples of the actions or emotions of others. The degree to which feedback connections and Bayesian hierarchical predictive coding contribute to how mammals process more complex social stimuli has been less explored, and will be the focus of this review. We illustrate paradigms that start to capture how participants predict the actions and emotions of others under more ecological conditions. Together, these efforts draw a richer picture of social cognition in which predictive cyclical coding and play significant roles. Kiebel, Stefan, et al. A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology. 4/11, 2008. With Jean Daunizeau and Karl Friston, Wellcome Trust Centre, University College London, neuroscientists quantify the presence of direct structural parallels between us “ontogenetic adaptive agents,” and a person’s dynamic, scalar (phylogenetic) environment. Compare, for example, with Altamura, et al (2012) above for evidences that we ourselves, our very cerebral, cognitive faculty, again seems a human epitome of the genesis universe. In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. (Abstract) We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. (Abstract) Kirchhoff, Michael. Predictive Brains and Embodied, Enactive Cognition: An Introduction to the Special Issue. Synthese. 195/6, 2018. An editorial for a Special Issue on Predictive Brains and Embodied, Enactive Cognition by the University of Wollongong, Australia philosopher which reviews and assimilates these dynamic neuroscientific, thought-provoking vistas. See also his own entry Autopoiesis, Free Energy, and the Life-Mind Continuity Thesis which continues to join these schools which are traced back to the work of Francisco Varela, see the second Abstract. All the papers in this special issue intersect work on predictive processing models in the neurosciences and embodied, enactive perspectives on mind. All contributions deal with questions of whether and how key assumptions of the predictive brain hypothesis can be reconciled with approaches to cognition that take embodiment and enaction as playing a central and constitutive role in our cognitive lives. While there is broad consensus that bodily and worldly aspects matter to cognition, predictive processing is often understood in epistemic, inferential and representational terms. Rather than stressing how these accounts differ, others such as Andy Clark (University of Edinburgh) emphasize what they have in common, focusing on how predictive processing models provide “the perfect neuro-computational partner for work on the embodied mind.” Our aim is to nudge this particular area of research forward by examining how to combine the best of these frameworks in a joint pursuit. (Intro Abstract excerpt) Knyazeva, Helena. Nonlinear Cobweb of Cognition. Foundations of Science. 14/3, 2009. The Evolutionary Epistemology program director at the Institute of Philosophy of the Russian Academy of Sciences here proposes to recast cerebral activities, both for persons and contextual nature, in terms of complex system phenomena. As a result, a constructivist, enactive emergence appears as a “coming to be” self-realization for both individuals and encompassing cosmos, each engaged in a vast learning process. Cognition is dynamical and under construction in the processes of self-organization. In other words, cognitive systems are dynamical and self-organizing ones. The functioning of cognitive systems is similar in principle to the function of natural systems which undergo our cognition, i.e., of objects of the surrounding world, the essence of there processes is analogous. Therefore, in the frames of the embodied cognition approach called also the dynamical approach in cognitive science, the latest developments in the fields of nonlinear dynamics, the theory of complex adaptive systems, the theory of self-organized criticality and synergetics are widely and fruitfully used. (171) Koch, Christoph and Gilles Laurent. Complexity and the Nervous System. Science. 284/96, 1999. A survey article on the explanatory value of dynamical theories in neuroscience. While everyone agrees that brains constitute the very embodiment of complex adaptive systems and that Albert Einstein’s brain was more complex than that of a housefly, nervous system complexity remains hard to define.…Any realistic notion of brain complexity must incorporate, first the highly nonlinear, nonstationary and adaptive nature of the neuronal elements themselves and, second, their nonhomogeneous and massive parallel patterns of interconnections whose ‘weights’ can wax and wane across multiple time scales in behaviorally significant ways. (98) Kozma, Robert and Walter Freeman. Cinematic Operation of the Cerebral Cortex Interpreted via Critical Transitions in Self-Organized Dynamic Systems. Frontiers of Systems Neuroscience. Online February, 2017. The University of Memphis mathematician is here joined by the late (1927-2016) UC Berkeley pioneer theorist of our cerebral activity by the grace of nonlinear complexities. We cite for its content, and as an exemplar of nature’s tendency to reside in a critically poised optimum state between too much chaos or order. A middle balance of these reciprocal complements, as perennial wisdom teaches, is ever best. A worst out-of-kilter situation might then be American politics where they are locked in mutual destruction. Measurements of local field potentials over the cortical surface and the scalp of animals and human subjects reveal intermittent bursts of beta and gamma oscillations. This observation leads to our cinematic theory of cognition when perception happens in discrete steps manifested in the sequence of AM patterns. We treat cortices as dissipative systems that self-organize themselves near a critical level of activity that is a non-equilibrium metastable state. Criticality is arguably a key aspect of brains in their rapid adaptation, reconfiguration, high storage capacity, and sensitive response to external stimuli. Self-organized criticality (SOC) became an important concept to describe neural systems. We employ random graph theory and percolation dynamics as fundamental mathematical approaches to model fluctuations in the cortical tissue. Our results indicate that perceptions are formed through a phase transition from a disorganized (high entropy) to a well-organized (low entropy) state, which explains the swiftness of the emergence of the perceptual experience in response to learned stimuli. (Abstract excerpts) Kwisthout, Johna, et al. Special Issue on Perspectives on Human Probabilistic Inference and the Bayesian Brain. Brain and Cognition. 112/1, 2017. An issue editorial for a collection of papers broadly about the predictive brain theory of Karl Friston and many colleagues. See for example, The Infotropic Machine, A Social Bayesian Brain, and Explanatory Pluralism.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |