|
IV. Ecosmomics: Independent, UniVersal, Complex Network Systems and a Genetic Code-Script SourceBiocomplexity Institute. http://www.indiana.edu/~bioc/. Accessed June 2011, this is an interdisciplinary endeavor of Indiana University at the leading edge of these lively sciences. Biophysicist James Glazier is director, members include biophysicist John Beggs, information visionary Katy Borner, psychologist Robert Goldstone, Allessandro Flammini and Luis Rocha, bioinformatics, and neuroscientist Olaf Sporns. We quote the Institute’s main definition, along with a statement for Goldstone’s Percepts and Concepts Laboratory, as they convey this revolutionary engagement with and discovery of a radical genesis nature. Biocomplexity is the study of the emergence of self-organized, complex behaviors from the interaction of many simple agents. Such emergent complexity is a hallmark of life, from the organization of molecules into cellular machinery, through the organization of cells into tissues, to the organization of individuals into communities. The other key element of biocomplexity is the unavoidable presence of multiple scales. Often, agents organize into much larger structures; those structures organize into much larger structures, etc. A classic example is the primary, secondary, tertiary, and quaternary folding of DNA into chromosomes that allows a strand of a length of several centimeters to fold, without tangling or losing function, into a chromosome about one micron long. Biocomplexity is a methodology and philosophy as well as a field of study. It focuses on networks of interactions and the general rules governing such networks. Center for Models of Life. www.cmol.nbi.dk. A graphically informative website for this endeavor located at the Niels Bohr Institute, University of Copenhagen and directed by Kim Sneppen. Research is pursued such areas as: Physics of Gene Regulation, Models of Biological Circuits, Networks and Communication, and Evolution and Dynamical Systems, each with referenced publications. If our extant nature from cell to city is found to exhibit these pervasive innate and invariant phenomena, by what sufficient proof, might it prompt and allow us to realize a greater genesis?
Complexity Digest.
www.comdig.org.
Founded by the late Gottfried Mayer, the present Editor-in-Chief is Carlos Gershenson who with international collaborators and audience, suggest and post new citations apropos the wavefront of the complex systems revolution. The engaging site enters the latest advances in articles, books, presentations and conferences, along with university programs, and more. Complexity Digest represents a premier resource for learning about and keeping up with the frontiers of a self-organizing universe and sustainable future.
New England Complex Systems Institute.
www.necsi.org.
Founded and run by systems scholar Yaneer Bar-Yam and colleagues, this multifaceted site is a rich resource for general and specific content all about the nonlinear systems revolution from evolution to economies. The group has run a biannual International Conference on Complex Systems in the Boston area since the late 1990s. I went to four of these incredible events to which luminaries such as Edward Lorenz, Stephen Wolfram, Stuart Kauffman, Gene Stanley, and everyone else it seems presents or attends. The Proceedings for the 2011 gala are accessible from the home page, click ICCS under Events. The New England Complex Systems Institute (NECSI) is an independent academic research and educational institution with students, postdoctoral fellows and faculty. In addition to the in-house research team, NECSI has co-faculty, students and affiliates from MIT, Harvard, Brandeis and other universities nationally and internationally. Plamen Ch. Ivanov website. physics.bu.edu/people/show/plamen. We cite this home page of the Bulgarian-American, Boston University research professor as an example of the creative, worldwide frontiers of nonlinear, self-organizing complex network theories. From this site, the Keck Laboratory for Network Physiology which Ivanov directs, can be accessed with its rich array of projects, people, and publications. A recent contribution is the discovery of non-equilibrium critical dynamics in bursts of cortical dynamics in sleep/wake cycles (search for 2019 paper). His collegial research across a wide range from condensed matter to cardiac, neural, somatic onto societies well attests to nature’s universally recurrent manifestation of the same mathematical dynamics everywhere. My research group has introduced several innovative approaches to analyze physiologic data by adapting concepts from modern statistical physics, nonlinear dynamics, and applied mathematics. These methods have been successfully applied to cardiac, respiratory, locomotion, and brain systems, along with sleep-stage transitions and circadian rhythms. Those data-driven approaches enabled us to discover basic laws of physiologic regulation of individual systems whose results were published in leading journals such as Nature, PNAS and Physical Review Letters. Our overall research objective is to develop a new interdisciplinary field, Network Physiology, integrating efforts across statistical and computational physics, biomedical engineering, human physiology, and medicine. PLoS Complex Systems.. plos.org/complex-systems-research-journal. We note this new publication website as a way to record its occasion, along with two other complexity science, broadly conceived, online appearances. PRX Life newly joins the Physical Review series of the American Physical Society, and npj Complexity as a 2024 Nature Partner Journal issue. Into the 21st century every natural and societal phase has totally reconceived itself by way this theoretic and exemplary actuality, so it is appropriate that mainline venues provide dedicated sources. As a starter we enter a brief intro from their sites.
Santa Fe Institute. www.santafe.edu. The original, innovative center since 1984 for the theoretical and practical study of complex, dynamical system insights into natural and social worlds. Typical subject areas include the Physics of Complex Systems, Emergence and Innovation in Evolutionary Systems, Information Processing and Computation in Nature and Society, and Emergence, Organization and Dynamics of Living Systems. For publications, the SFI Bulletin, (e.g., Volume 24, 2009), a long list of Working Papers each year, and under Research, a Bibliography of papers by SFI members cited on the website convey the leading edge of nonlinear studies. Mission The Santa Fe Institute is a transdisciplinary research community that expands the boundaries of scientific understanding. Its aim is to discover, comprehend, and communicate the common fundamental principles in complex physical, computational, biological, and social systems that underlie many of the most profound problems facing science and society today. Abreu, Carlos, et al. Extreme fractal dimension at periodicity cascades in parameter spaces. . We cite this journal article by five physicists based in Sao Paulo, Brazil and Oldenburg, Germany as a current observance of nature’s inherent self-similar universality across every atom, cosmos and human infinity phase. In the parameter spaces of nonlinear dynamical systems, we investigate the boundaries between periodicity and chaos so to discern the existence of fractal sets with a singular dimension that deviates from other fractals in their vicinity. We show that such singular sets dwell along parameter curves that intersect periodicity cascades at their centers of stability across all scales and spaces. The results reported here are exemplified by the class of one-dimensional maps with at least two control parameters. (Excerpt) Ahmad, Mohammad, et al.. Defining Complex Adaptive Systems: An Algorithmic Approach.. Systems. 12/2, 2024. We cite this entry by University of Huddersfield, UK computer scientists for their novel consideration of better ways to understand nature’s nonlinear, dynamic complexity phenomena. Despite a profuse literature on complex adaptive systems (CAS), it still remains to definitely answer whether a given system is of this kind. In this work, we propose a novel description for CASs in the form of a concise, scientific algorithmic framework. Our model first asks whether it meets complexity-related attributes and then considers attributes related to adaptivity, including autonomy, memory, self-organisation, and emergence. We demonstrate by case studies in medical and supply chain domains. Our novel approach is meant as an efficient auditing tool by which to provide insights for the relevant users to optimise their processes and organisational structures. (Excerpt) Altan-Bonnet, Gregoire, et al. Quantitative Immunology for Physicists. Physics Reports. Online January, 2020. Veteran complexity theorists G A-B, National Cancer Institute, USA, with Thierry Mora Aleksandra Walczak, CNRS Sorbonne University, Paris post a 70 page tutorial which reviews the latest perceptions of this important biological process. It then shows how much the immune system has become understood as another vital manifestation of nature’s universal complexities. Some sections are Ligand-Receptor Interaction, Antigen Diiscrimination, Cel to Cell Communication, and Populations Dynamics of Pathogens and Hosts. The adaptive immune system is a dynamical, self-organized multiscale system that protects vertebrates from both pathogens and internal irregularities, such as tumours. For these reason it fascinates physicists, yet the multitude of different cells, molecules and sub-systems is often also petrifying. Despite this complexity, as experiments on different scales of the adaptive immune system become more quantitative, many physicists have made both theoretical and experimental contributions that help predict the behaviour of ensembles of cells and molecules that participate in an immune response. Here we review some recent contributions with an emphasis on quantitative questions and methodologies. We also provide a more general methods section that presents some of the wide array of theoretical tools used in the field. (Abstract) Altmann, Eduardo. Statistical Laws in Complex Systems. arXiv:2407.19874.. A University of Sydney mathematical physicist draws on extensive studies (search) to provide a latest text for this field to be published by Springer in December. In this year, its contribution is a further grounding of these nonlinear features in the deep theories of statistical physics. After an introduction in this regard, the next chapter offers manifest exemplars from earthquakes and cities to metabolisms and literary texts. Followed by a long session on ways to gain samples, analyze data, identify scales and so on, the work closes with views of machine learning and artificial intelligence. As the third quote cites, an overarching theme is a natural universality as the same patterns and processes are found to repeat in kind everywhere. Statistical laws describe regular patterns observed in diverse scientific domains such as the magnitude of earthquakes (Gutenberg-Richter law) and metabolic rates in organisms (Kleiber's law), the frequency distribution of words in texts (Zipf's laws), and productivity metrics of cities (urban scales). This monograph provides an unifying approach to the study of these statistical phenomena in the theoretical understanding of complex systems and the different data-analysis methods to evaluate them. Starting with simple examples and progressing to more advanced time-series methods, the text will provide comprehensive material for researchers interested in analyzing data, testing and comparing different laws, and interpreting datasets. (Abstract excerpt) Altmann, G. and Walter Koch, eds. Systems: New Paradigms for the Human Sciences. Berlin: de Gruyter, 1998. A European compendium which situates and contemplates the human phase within a self-developing universe.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |