|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape1. Quantum Cosmology Theoretic Unity
Perimeter Institute for Theoretical Physics.
http://www.perimeterinstitute.ca..
Founded and generously funded in 1999 by Mike Lazaridis, CEO, Research in Motion of Blackberry fame, as a world class scientific center located in Canada (Waterloo, Ontario) it has now for a decade quite fulfilled this mission. An original member was the visionary physicist Lee Smolin, who has helped much in achieving an international stature. As a result PI has become a select host for a wide range of conferences; a sample for 2009 would include Holographic Cosmology, The Economic Crisis and its Implications for the Science of Economics, New Prospects for Solving the Cosmological Constant Problem, and Reconstructing Quantum Theory. A dedicated website named Perimeter Institute Recorded Seminar Archive www.pirsa.org has been set up to provide video lecture coverage of each luminous event. One typical talk might be “The Past and Future of the Astrophysical Universe” by Avi Loeb. But all such efforts seem burdened by the vested sterility wherein life, mind, and people, surely examples of emergent complexity (due to gravity?) remain of no account or destiny. Varying Constants and Fundamental Cosmology. https://indico.cern.ch/event/462870/overview. A September 2016 conference held at the University of Szczecin, Poland, on this vast subject, as the quote cites. International authorities such as Jean-Philippe, John Moffat, Laura Mersini-Houghton, Paul Davies, Michael Heller, Thomas Naumann and others were among the speakers. Select papers are being published in the MDPI online journal Universe. As a reflection, it amazes that human beings seem to have a capacity to discover and quantify any breadth and depth of the material cosmos. Our minute third infinity of living, cognitive entities to have evolved so as to convert these atomic and cosmic realms into recorded knowledge. This time the aim of the conference was to bring together specialists dealing with the problem of varying (dynamical) physical constants and a broad range of other topics. The last day of the conference was devoted to philosophical aspects of the variability of physical constants and the frontiers of physics and cosmology. Further topics: Modified gravity, Quantum cosmology, Quantum entanglement, Multiverse, Anthropic principle, Dark matter, Dark energy, Inflation and large-scale structure, Early Universe, Gravitational waves, Cosmic Microwave Background. Adlam, Emily and Carlo Rovelli. Information is Physical: Cross-Perspective Links in Relational Quantum Mechanics. Philosophy of Physics. 1/1, 2024. In this new journal, Chapman University, CA, and Aix-Marseille University polyscholars weave various threads, as the quotes note, whose 2024 tapestry appears as a clearer perception of this natural integrity. Herein novel properties between content and cosmos are added in support. See also The Combination Problem for Relational Quantum Mechanics by EA at arXiv:2401.15790 and The Generative Programs Framework by Mordecau Waegell. et al at arXiv:2307.11282. Relational quantum mechanics (RQM) is an interpretation of based on the idea that quantum states do not describe a system property but rather a relationship between systems. There have been some criticisms of RQM around intersubjectivity. In this article, we show how RQM can address this by a postulate that the information possessed by an observer is stored in physical variables and thus is accessible to other observers. We suggest an ontology which upholds the principle that quantum states are always relational. (Excerpt) Ambjorn, J., et al. The Universe from Scratch. Contemporary Physics. 47/2, 2006. By way of a method to observe and quantify a fluctuating quantum geometry at Planck scales (10-33 centimeters) called Causal Dynamical Triangulations. The paradigm of spacetime beginning to emerge from CDT is that of a scale-invariant, fractal and effectively lower-dimensional structure at the Planck scale, which only at a larger scale requires well-known features of geometry which accord with our classical intuition. (115) Ananthaswamy, Anil. Cosmic Countdown. New Scientist. July 20, 2019. A science writer (search) gathers and reports on a florescence of physical theories in the literature that appear to presage revolutionary cosmologies. A working image of a Swampland (search arXiv), coined by Harvard physicist Cumrun Vafa, contains mix or miasma of string theories, quantum gravity, relativity, de Sitter vacuum, covariant entropy, black holes, and more conjectures. The article is based on interviews with Vafa, Andrei Linde, Eran Palti, Catherine Heymans, and others, along with Anil’s familiar experience (search). Something deeply vital seems to be brewing, which may lead to novel understandings, or wind up at a new square one. See, for example, The Swampland: Introduction and Review by Palti at arXiv:1903.06239, and Towards a Unified View of Swampland Conjectures by Cesar Gomez (1907.13386). Anders, Janet and Karoline Wiesner. Increasing Complexity with Quantum Physics. Chaos. 21/037102, 2011. University College London and University of Bristol physicists continue the realization that their fields of study have much akin with the subject and theory of nonlinear systems. Statistical mechanics joined forces circe 2007, here it is extended within a seamless nature as it must into quantum phenomena. The Article Outline introduces, enters “laws of quantum physics,” then “quantum complexity” with an emphasis on computational correlations, phase transitions, and effects in biology and thermodynamics. We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task. (037102) Ashtekar, Abhay, et al. Quantum Nature of the Big Bang. Physics Review Letters. 96/141301, 2006. The cosmic singularity can be made more predictable by way of the theories of loop quantum gravity. A quantum bridge is then proposed to link two classical universes, one contracting, the other expanding. Bachlechner, Thomas, et al. Axion Landscape Cosmology. arXiv:1810.02822. We cite this entry by physicists TB, UC San Diego, Kate Eckerle and Oliver Janssen, University of Milan, and Matthew Kleban, NYU as their latest paper which by mathematical finesses that seem to allude to sentient beings able to learn this. I heard Kleban speak on The Axidental Universe at UM Amherst on November 9, second abstract below, and see also by this team Multiple-Axion Framework in Physical Review D (98/061301, 2018). We study the cosmology of complex multi-axion theories. With O(100) fields and GUT scale energies these theories contain a vast number of vacua, inflationary trajectories and a natural dark matter candidate. We demonstrate that the vacua are stable on cosmological timescales. In a single theory, both large- and small-field inflation are possible and yield a broad range of cosmological observables, and vacuum decay can be followed by a relatively large number (> 60) of efolds of inflation. Light axions stabilized by gravitational instantons may constitute a natural dark matter candidate that does not spoil an axion solution to the strong CP problem. (Abstract) Bartelmann, Matthias, et al. Cosmic Structure Formation with Kinetic Field Theory. Annalen der Physik. 531/11, 2019. A ten person team from the University of Heildeberg and ETH Zurich offer further ways that this KFT mathematical conception, initiated by the lead author and colleagues in the earlier 2010s, can be seen well reflect and explain the variegated shape and course of celestial topologies. Search the arXiv eprint site by Bartelmann and the KFT term for much more. Kinetic field theory (KFT) is a statistical theory for an ensemble of classical point particles in or out of equilibrium. We here review its application to cosmological structure formation by adapting it to an expanding spatial background and the homogeneous and isotropic, correlated initial conditions for nonlinear cosmic formations. Three approaches are developed which rest either on expanding an interaction operator, averaging the interaction term, or resumming perturbation terms. (Abstract excerpt) Bohm, David. Wholeness and the Implicate Order. London: Routledge & Kegan Paul, 1980. The philosophical physicist draws upon unique insights into quantum theory to describe how an “explicate,” overt universe, its life forms and human dialogic consciousness, emanates from and reflects an “implicate,” unmanifest order. Bojowald, Martin. Foundations of Quantum Cosmology. Online: IOP Publishing, 2020. This latest volume by Penn State University theoretical physicist offers a wide-ranging survey along with in-depth mathematical aspects. Its chapters are Universe on Large and Small Scales, Covariance, Quantum Corrections, Minispace Models, Quantum Gravity, and Inhomogeneous Spacetimes. Bojowald, Martin. Quantum Cosmology: A Review. Reports on Progress in Physics. 78/023901, 2015. The Penn State physicist posts an extensive technical update on the two decade project to coherently join these disparate spatial and temporal domains.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |