|
V. Life's Corporeal Evolution Develops, Encodes and Organizes Itself: An Earthtwinian Genesis Synthesis4. Multicellular Fauna and Flora Organisms in Transition Wedlich-Soldner, Roland and Timo Betz. Self-Organization: The Fundament of Cell Biology. Philosophical Transactions of the Royal Society B.. Vol.373/Iss.1747, 2018. We enter this introductory note by University of Munster, Cells in Motion Cluster of Excellence, systems scientists both for the special issue, and as the Abstract cites, an example of how into the 2010s nonlinear complex systems dynamics have actuallybecome accepted as a mainstream explanatory paradigm. Among the papers are Self-Organization across Scales: From Molecules to Organisms by Tanumoy Saha and Milos Galic and Self-Organization Principles of Intracellular Pattern Formation by Jacob Halatek, et al (reviewed herein). Self-organization refers to the emergence of an overall order in time and space of a given system that results from the collective interactions of its individual components. This concept has been widely recognized as a core principle in pattern formation for multi-component systems of the physical, chemical and biological world. It can be distinguished from self-assembly by the constant input of energy required to maintain order—and self-organization therefore typically occurs in non-equilibrium or dissipative systems. Cells, with their constant energy consumption and myriads of local interactions between distinct proteins, lipids, carbohydrates and nucleic acids, represent the perfect playground for self-organization. It therefore comes as no surprise that many properties and features of self-organized systems, such as spontaneous formation of patterns, nonlinear coupling of reactions, bi-stable switches, waves and oscillations, are found in all aspects of modern cell biology. Ultimately, self-organization lies at the heart of the robustness and adaptability found in cellular and organismal organization, and hence constitutes a fundamental basis for natural selection and evolution. (Abstract)
Wilkins, Adam.
The Evolution of Developmental Pathways.
Sunderland, MA: Sinauer,
2002.
A contribution to the resurgence of evolutionary developmental biology. Woese, Carl. Interperting the Universal Phylogenetic Tree. Proceedings of the National Academy of Sciences. 97/8392, 2000. A review of the past history and present clarifications in specifying the three kingdoms of life with their common root and branches to plants and animals. The above theory makes a testable prediction: the ancestors of the individual domains - the Bacteria, the Archaea, and the eukaryotes - are each communal, and the evidence for their communal nature, in the form of elevated levels of horizontal gene transfer within each domain early on (i.e., transfer involving the ancestors of the major taxa), should still exist. (8395) Xing, Jianhua, et al. Computational Cell Biology. Interface Focus. 4/20140027, 2014. Virginia Tech and University of Cincinnati scientists introduce a special issue as another example of the on-going evolutionary revolution to better understand organismic life by virtue of equally real, independent, pervasive dynamic, modular, network and systems phenomena. A notable paper is It is Not the Parts, but How They Interact that Determines the Behavior of Circadian Rhythms across Scales and Organisms by Dan DeWoskin, et al. As in physics and chemistry long ago, molecular life sciences are undergoing a foundational revision from empirical to mathematical. This trend has been prompted by insufficiency of the reductionist approach to provide quantitative explanations and predictions for the properties of molecular regulatory systems, whose observed behaviours are typically emergent phenomena governed by interactions between multiple components. A now classical example of this situation is the study of biological oscillations, such as circadian rhythms and the cell cycle, where the most significant properties of oscillation (period, amplitude, robustness, etc.) are non-trivially related in general to the details of the underlying network. Yamagishi, Jumpei, et al. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates. PLoS Computational Biology. Online October, 2016. With Neri Salto and Kunihiko Kaneko, University of Tokyo biologists advance their studies of life’s persistent symbiosis of entity and assembly, which here is seen to foster nested stages of beneficial complexities and an emergent evolution. In this case, generic developmental systems theory explains how such groupings become wholly viable through reciprocal divisions of labor. See also Prof. Kaneko’s chapter in the 2016 volume Multicellularity (search Niklas). Unicellular organisms, when aggregated under limited resources, often exhibit behaviors akin to multicellular organisms, possibly without advanced regulation mechanisms, as observed in biofilms and bacterial colonies. Cells in an aggregate have to differentiate into several types that are specialized for different tasks, so that the growth rate should be enhanced by the division of labor among these cell types. To consider how a cell aggregate can acquire these properties, most theoretical studies have thus far assumed the fitness of an aggregate of cells and the ability of cell differentiation a priori. In contrast, we developed a dynamical-systems model consisting of cells without assuming predefined fitness. The model consists of catalytic-reaction networks for cellular growth. By extensive simulations and theoretical analysis of the model, we showed that cells growing under the condition of nutrient limitation and strong cell-cell interactions can differentiate with distinct chemical compositions. They achieve cooperative division of labor by exchanging the produced chemicals to attain a higher growth rate. The conditions for spontaneous cell differentiation and collective growth of cells are presented. The uncovered symbiotic differentiation and collective growth are akin to economic theory on division of labor and comparative advantage. (Summary) Zimmer, Carl. At the Water’s Edge: Macroevolution and the Transformation of Life. New York: The Free Press, 1998. The narrative story of the transition from fish to tetrapod and from land mammal to whales.
Zimmer, Carl.
The Tangled Bank: An Introduction to Evolution.
Greenwood Village, CO: Roberts and Co,
2009.
A beautifully organized, illustrated and written text tour of the grandeur of Darwinian naturally living systems.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |