|
V. Life's Corporeal Evolution Develops, Encodes and Organizes Itself: An Earthtwinian Genesis Synthesis4. Multicellular Fauna and Flora Organisms in Transition Nicholson, Daniel. Organisms ≠ Machines. Studies in the History and Philosophy of Biological and Biomedical Sciences. 44/4, 2013. With these sciences burdened by a centuries old ruling metaphor of life defined and described by mechanistic terms, a Cohn Institute, Tel Aviv University, philosopher explains and calls for a much overdue corrective. How obvious the error when a comparison is as clearly drawn as this. Machines are externally made, passive, can be taken apart, with no vitality of their own. Organisms have an intrinsic, motive purpose, holistic by way of interdependent cellular organs, and so on. In our midst of a cosmic Copernican revolution from dead to alive, this negative conflation that tacitly controls and constrains scientific mindsets is in much need of resolve. For a contrast see, e.g., Marijuan, et al (2013) on ‘blind’ cellular machinery, or Marchetti, et al (2013) about the lively physics of “active matter.” The machine conception of the organism (MCO) is one of the most pervasive notions in modern biology. However, it has not yet received much attention by philosophers of biology. The MCO has its origins in Cartesian natural philosophy, and it is based on the metaphorical redescription of the organism as a machine. In this paper I argue that although organisms and machines resemble each other in some basic respects, they are actually very different kinds of systems. I submit that the most significant difference between organisms and machines is that the former are intrinsically purposive whereas the latter are extrinsically purposive. Using this distinction as a starting point, I discuss a wide range of dissimilarities between organisms and machines that collectively lay bare the inadequacy of the MCO as a general theory of living systems. To account for the MCO’s prevalence in biology, I distinguish between its theoretical, heuristic, and rhetorical functions. I explain why the MCO is valuable when it is employed heuristically but not theoretically, and finally I illustrate the serious problems that arise from the rhetorical appeal to the MCO. (Abstract) Nicholson, Jeremy, et al. The Challenges of Modeling Mammalian Biocomplexity. Nature Biotechnology. 22/10, 2004. From a special issue on Systems Biology, a case is made that complex organisms such as human beings ought to be appreciated as “superorganisms” composed on many types of functional microbes. By this approach, better methods of drug design and prescription can be achieved. Highly complex animals such as humans can be considered ‘superorganisms’ with an internal ecosystem of diverse symbiotic macrobiota and parasites that have interactive metabolic processes. (1268) Niklas, Karl and Stuart Newman. The Origins of Multicellular Organisms. Evolution & Development. 15/1, 2013. The Cornell University plant biologist and New York Medical College cell biologist provide a current update of the persistent course of unicellular life to form more complex creatures in similar self-organized, symbiotic ways as they became whole entities. Multicellularity has evolved in several eukaryotic lineages leading to plants, fungi, and animals. Theoretically, in each case, this involved (1) cell-to-cell adhesion with an alignment-of-fitness among cells, (2) cell-to-cell communication, cooperation, and specialization with an export-of-fitness to a multicellular organism, and (3) in some cases, a transition from “simple” to “complex” multicellularity. When mapped onto a matrix of morphologies based on developmental and physical rules for plants, these three phases help to identify a “unicellular colonial filamentous (unbranched branched) pseudoparenchymatous parenchymatous” morphological transformation series that is consistent with trends observed within each of the three major plant clades. In contrast, a more direct “unicellular colonial or siphonous parenchymatous” series is observed in fungal and animal lineages. In these contexts, we discuss the roles played by the cooptation, expansion, and subsequent diversification of ancestral genomic toolkits and patterning modules during the evolution of multicellularity. (Summary) Niklas, Karl and Stuart Newman, eds. Multicellularity: Origins and Evolution. Cambridge: MIT Press, 2016. A collection from a September 2014 conference at the Konrad Lorenz Institute in Austria on persistent evolutionary transitions from simpler unicellular forms to the multiple complexities of cellular organisms. Discussions covered the span of genetic to environmental to philosophic aspects of life’s insistent drive and propensity to develop entities within encompassing biological wholes. Typical papers are Fossils, Feeding, and the Evolution of Complex Multicellularity by Andrew Knoll and Daniel Lahr, Cellular Slime Mold Development by Vidyanand Nanjundiah, and A Scenario for the Origin of Multicellular Organisms: Perspective from Multilevel Consistency Dynamics by Kunihiko Kaneko. The evolution of multicellularity raises questions regarding genomic and developmental commonalities and discordances, selective advantages and disadvantages, physical determinants of development, and the origins of morphological novelties. It also represents a change in the definition of individuality, because a new organism emerges from interactions among single cells. The contributors consider the fossil record of the paleontological circumstances in which animal multicellularity evolved; cooptation, recurrent patterns, modularity, and plausible pathways for multicellular evolution in plants; theoretical approaches to the amoebozoa and fungi (cellular slime molds having long provided a robust model system for exploring the evolution of multicellularity), plants, and animals; genomic toolkits of metazoan multicellularity; and philosophical aspects of the meaning of individuality in light of multicellular evolution. (Publisher)
Niklas, Karl and Stuart Newman, eds..
Multicellularity: Origins and Evolution..
Cambridge: MIT Press,.
June,
2022.
These veteran biologists gather 14 chapters across every subject aspect by leading authorities to achieve a book length explanation and endorsement of this most major anatomic, physiologic and personal transition. See also The Evolution of Multicellularity by Matthew Herron, et al, eds (CRC Press, 2022) for a concurrent statement. The evolution of multicellularity raises many issues such as genomic an and developmental commonalities, selective factors, physical determinants, morphological novelties and more.. It also involves a change in the definition of individuality, because a new organism emerges from interactions among cells. The diverse authors consider the fossil record of a paleontological past in which animal multicellularity evolved; cooptation, recurrent patterns, modularity, pathways for plant multicellularity; theoretical approaches to the amoebozoa and fungi, and animals; metazoan genomics; and philosophical meanings of individuality in light of multicellular evolution over some 14 chapters. O’Leary, Maureen. On the Trail of the First Placental Mammals. American Scientist. May/June, 2014. The SUNY Stony Brook, School of Medicine, professor of Anatomical Sciences and director of the MorphoBank Project for Phylogenetic Research describes the latest worldwide reconstruction of the myriad critters and creatures across evolutionary stages and kingdoms, which is now graphically online at morphobank.org. And if to reflect, who are we Anthropo Sapiens to so emerge from and altogether be able to retrospectively view from whence we came? What kind of universe wants and needs to achieve its own self-conscious description? Olimpio, Eduardo, et al. Statistical Dynamics of Spatial-Order Formation by Communicating Cells. iScience. 2/27, 2018. In this new Cell Press open journal, a team of Delft University of Technology, Kavli Institute of Nanoscience, biophysicists continue to join life’s dynamic evolutionary cellularity with its natural rootings in condensed matter mechanics. Communicating cells can coordinate their gene expressions to form spatial patterns, generating order from disorder. Here we present a modeling framework based on cellular automata and mimicking approaches of statistical mechanics for understanding how secrete-and-sense cells with bistable gene expression, from disordered beginnings, can become spatially ordered by communicating through rapidly diffusing molecules. Classifying lattices of cells by two “macrostate” variables reveals a conceptual picture: a group of cells behaves as a single particle that rolls down on an adhesive “pseudo-energy landscape” whose shape is determined by cell-cell communication and an intracellular gene-regulatory circuit. (Abstract excerpts) Pagel, Mark, ed. Encyclopedia of Evolution. Oxford: Oxford University Press, 2002. A two volume compendium of the fossil and gene based standard Darwinian theory, but as so many fragments with no sense of anything going on. As an example, emergent brain development gets four pages out of more than twelve hundred. Parfrey, Laura Wegener and Daniel Lahr. Multicellularity Arose Several Times in the Evolution of Eukaryotes. BioEssays. 35/4, 2013. University of Colorado and University of Sao Paulo system zoologists contribute to findings of a “strikingly similar” impetus and tendency across flora and fauna to evolve and join into increasing complex organismic assemblies. This propensity then converges in a way that repeats in kind the biomolecular mechanisms of its unicellular ancestors. The cellular slime mold Dictyostelium has cell-cell connections similar in structure, function, and underlying molecular mechanisms to animal epithelial cells. These similarities form the basis for the proposal that multicellularity is ancestral to the clade containing animals, fungi, and Amoebozoa (including Dictyostelium): Amorphea (formerly “unikonts”). This hypothesis is intriguing and if true could precipitate a paradigm shift. However, phylogenetic analyses of two key genes reveal patterns inconsistent with a single origin of multicellularity. A single origin in Amorphea would also require loss of multicellularity in each of the many unicellular lineages within this clade. Further, there are numerous other origins of multicellularity within eukaryotes, including three within Amorphea, that are not characterized by these structural and mechanistic similarities. Instead, convergent evolution resulting from similar selective pressures for forming multicellular structures with motile and differentiated cells is the most likely explanation for the observed similarities between animal and dictyostelid cell-cell connections. (Abstract) Parker, Joseph. Parker, Joseph. Organ Evolution: Emergence of Multicellular Function.. Annual Review of Cell and Developmental Biology.. June, 2024. As the abstract notes, a CalTech bioengineer contributes new reasons how and why segmented, modular living systems came together for mutual benefit on this course of nested complexity. Instances of multicellularity across the tree of life have fostered the evolution of complex organs composed of distinct cell types that cooperate and produce emergent biological functions. To study how organs originate I propose a cell- to organ-level transitions framework, whereby a division of labor sets in between cell types by functional niche creation, cell type and ratcheting of cell interdependencies. These discrete components of functional variation may be deployed or combined within cells to introduce new properties into multicellular niches, or partitioned across cells to establish division of labor. (Excerpt) Pennisi, Elizabeth. The Power of Many. Science. 360/1388, 2018. A series of simple steps can explain the momentous transition from single cells to multicellular life. A science journalist gathers the work of Laszlo Nagy, Ben Kerr, Nicole King, Nicholas Butterfield, William Ratcliff and others to report new findings about how this evolutionary ascent unto complex organisms seems meant to readily proceed. An innate natural affinity for rudimentary cells to band together, repurpose, diversify, divide labor, and more so to gain group level benefits appears to be written in. Pfeiffer, Thomas and Sebastian Bonhoeffer. An Evolutionary Scenario for the Transition to Undifferentiated Multicellularity. Proceedings of the National Academy of Sciences. 100/1095, 2003. The initial phase in this emergence is seen as the formation of simple, undifferentiated cell clusters wherein cooperative behavior became more advantageous for survival than competition. The first step in the evolutionary transition to multicellularity likely was the evolution of simple, undifferentiated cell clusters….Here we argue that in populations of unicellular organisms with cooperative behavior, clustering may be beneficial by reducing interactions with noncooperative individuals. (1095)
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |