(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape

I. Our EarthMost Distinction: A Rarest Planetary Confluence of Life in Person Favorable Conditions

Simpson, Fergus. An Anthropic Prediction for the Prevalence of Waterworlds. arXiv:1607.03095. As myriad orbital objects of every possible kind are being detected, the University of Barcelona, Institute for Cosmic Sciences, researcher notes that in contrast to a default state of wholly wet or dry surfaces, Earth’s mottled mantle of ocean and land is a rare anomaly. By way of a “planetary fecundity,” life has been able to evolve from primitive rudiments to human observers, thus an anthropic explanation. We include longish quotes to catch the gist, which appends another reason why this home Earth is so uniquely precious.

Should we expect most habitable planets to share the Earth's marbled appearance? Terrestrial planets within the habitable zone are thought to display a broad range of water compositions, due to the stochastic nature of water delivery. Such diversity, taken at face value, implies that the surfaces of most habitable planets will be heavily dominated by either water or land. Convergence towards the Earth's equitably partitioned surface may occur if a strong feedback mechanism acts to regulate the exposure of land. It is therefore feasible that the Earth's relatively balanced division of land and sea is highly atypical amongst habitable planets. We construct a simple model for the anthropic selection bias that may arise from an ensemble of surface conditions. Across a broad class of models we consistently find that (a) the Earth's ocean coverage of 71% can be readily accounted for by observational selection effects, and (b) due to our proximity to the waterworld limit, the maximum likelihood model is one where the majority of habitable planets are waterworlds. This 'Dry Earth' scenario is consistent with results from numerical simulations, and could help explain the apparently low-mass transition in the mass-radius relation. (Abstract)

On a purely statistical basis, one naıvely expects to find a highly asymmetric division of land and ocean surface areas. A natural explanation for the Earth’s equitably partitioned surface is an anthropic selection process. We have highlighted two mechanisms which could be responsible for driving this selection effect. First of all, planets with highly asymmetric surfaces (desert worlds or waterworlds) are likely to produce intelligent species at a much lower frequency. Secondly, planets with larger habitable areas are capable of sustaining larger populations. Both of these factors imply that our host planet has a greater habitable area than most life-bearing worlds. (7) It has been argued that the apparently unique and special properties of the Earth is indicative of the sparsity of life in the Universe - the so-called ‘Rare Earth hypothesis’. However this interpretation fails to account for one of the factors which controls the fecundity: the number of observers produced by each planet. This amplifies the already considerable observational selection effects associated with the emergence of life. The parameters of an observer’s host planet are heavily skewed in favour of those conditions which maximize the abundance of life, not just the probability of its emergence. The apparent fine-tuning of the Earth’s parameters need not reflect the sparsity of life in the cosmos, but on the contrary, it may be driven precisely because we are a small piece within a vast ensemble. (8)

Simpson, Fergus. The Longevity of Habitable Planets and the Development of Intelligent Life. International Journal of Astrobiology. 16/3, 2017. The University of Barcelona cosmologist applies mathematical finesse to figure how much duration is actually necessary for life to evolve and emerge from microbes of a collaborative sapience able to do this. As a result, another vital condition is added of an extended length of time it seems to require, some billion years in our Earthly case.

Why did the emergence of our species require a timescale similar to the entire habitable period of our planet? Our late appearance has previously been interpreted by Carter (2008) as evidence that observers typically require a very long development time, implying that intelligent life is a rare occurrence. Here we present an alternative explanation, which simply asserts that many planets possess brief periods of habitability. We also propose that the rate-limiting step for the formation of observers is the enlargement of species from an initially microbial state. In this scenario the development of intelligent life is a slow but almost inevitable process, greatly enhancing the prospects of future SETI experiments such as the Breakthrough Listen project. (Abstract)

The formation of the Earth did not require billions of years because it was an improbable event - many other planets formed on a similar timescale - it required billions of years because it involved fundamentally slow processes. These include the collapse of cosmic structure, the life span of the first stars, and the growth of planetesimals. Similarly, the development time for mankind may have been limited by a slow process rather than a difficult one. (268)

Slijepcevic, Predrag and Chandra Wickramasinghe. Reconfiguring SETI in the Microbial Context: Panspermia as a Solution to Fermi's Paradox. Biosystems. August, 2021. As our conceptions of what constitutes intelligence and the modes from which it can appear expand in scope, veteran Brunel University and University of Buckingham, UK life and mind investigators (search each) consider ways that a newly fertile cosmos which fills itself with micro-organisms can also possess a relative modicum of comprehension.

All SETI (Search for Extraterrestrial Intelligence) programmes that were conceived and put into practice since the 1960s have been based on anthropocentric ideas concerning the definition of intelligence on a cosmic-wide scale. Brain-based neuronal intelligence, augmented by AI, are currently thought of as being the only form of intelligence that can engage in SETI-type interactions, and this assumption is likely to be connected with the dilemma of the famous Fermi paradox. We argue that high levels of intelligence and cognition inherent in ensembles of bacteria are much more likely to be the dominant form of cosmic intelligence, and the transfer of such intelligence is enabled by the processes of panspermia. We outline the main principles of bacterial intelligence, and how this intelligence may be used by the planetary-scale bacterial system, or the bacteriosphere, through processes of biological tropism, to connect to any extra-terrestrial microbial forms, independently of human interference. (Abstract)

Smith, Howard. Alone in the Universe. Zygon: Journal of Religion and Science. 51/2, 2016. In an Exoplanets and Astrotheology section, the Harvard-Smithsonian Center for Astrophysics scientist and philosopher updates his conclusion, as broached in American Scientist for July-August 2011, that based on a 2010s multitude of cosmological findings we human beings are most likely the only sapient personage. As this section along with Astrobiology, ExoEarths and elsewhere reports, such an epochal realization is in fact dawning upon us. A May 2016 Scientific American article Born of Chaos (Batygin), for example, describes our own solar systems as a uniquely ordered anomaly well suited for a long term habitable Earth. And from a Jewish perspective, the author notes that in his 2006 book Let There Be Light he evoked John A. Wheeler to say that we peoples might be the universe’s way of self-observation so as to bring into full creation.

We are probably alone in the universe—a conclusion based on observations of over 4,000 exoplanets and fundamental physical constraints. This article updates earlier arguments with the latest astrophysical results. Since the discovery of exoplanets, theologians have asked with renewed urgency what the presence of extraterrestrial intelligence (ETI) says about salvation and human purpose, but this is the wrong question. The more urgent question is what their absence says. The “Misanthropic Principle” is the observation that, in a universe fine-tuned for life (“Anthropic Principle”), the circumstances necessary for intelligence are rare. Rabbis for 2,000 years discussed the existence of ETI using scriptural passages. We examine the traditional Jewish approaches to ETI, including insights on how ETI affects our perception of God, self, free-will, and responsibility. We explore the implications of our probable solitude, and offer a Jewish response to the ethical lessons to be drawn from the absence of ETI. (Abstract)

Smith, Howard A.. The End of Copernican Mediocrity: How Modern Astrophysics Has Reinvigorated the Spiritual Dimension. Zoe Imfeld and Andreas Losch, eds.. Our Common Cosmos. London: Bloomsbury, 2018. The Harvard Smithsonian astronomer and author (search) claims that the long “misanthropic” removal of Earth and human beings from any central place, lately into a multiverse, has been way overdone. In the later 2010s, two features can help us recover a new identity and significance. The first, familiar reason is atomic and cosmic parameters which are precisely set for life and people, aka the Anthropic principle. A second factor, to which the author has contributed, is that our home planet where intelligent observers can evolve seems to be a rarest cocatenation of favorable galactic, solar, geologic, chemical, and atmospheric conditions, as our Earthropic section documents. A vital 21st century Copernican revolution could then be in our very midst, akin to this sourcesite, if we might only be of a mind to ask and see.

Even if the formation of life were inevitable on every planet in the universe with liquid water, and even if the Milky Way galaxy has millions of water=bearing Earth-sized planets, my conclusion is that for all practical purposes we and our descendants for at least 100 generations are living in solitude. We are most probably alone. To recognize this state is to have a renewed appreciation for our good future and to acknowledge that life on Earth is precious and deserves supreme respect. Humanity is not mediocre. (9)

But conscious life appears to be a remarkable achievement of the universe – not an attribute one would have predicted for an ensemble of atoms. Even if we are not unique we should admit that the bias underlying the modern preference for mediocrity – that we are nothing more than a random accident – may no longer be viable. The Anthropic Principle intimates that some feature of nature endowed the cosmos with this capacity from the big bang and over eons of evolution. If so, we are representatives of that teleological end point, and serve a cosmic purpose of extraordinary significance. (17-18)

Spalding, Christopher, et al. The Resilience of Kepler Systems to Stellar Obliquity. arXiv:1803.01182. Cal Tech planetary scientists CS, Noah Marx and Konstantin Batygin add still another highly variable feature of solar systems whence an axial tilt of its sunny star has a controlling impact on the number, orbital paths, and stability of any entrained worlds.

The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple members, but a large fraction possess only a single transiting example. This overabundance of singles has lead to the suggestion that up to half of Kepler systems might possess significant mutual inclinations between orbits, reducing the transiting number. Here, we investigate the ubiquity of the stellar obliquity-driven instability within systems with a range of multiplicities. We find that most planetary systems analysed, including those possessing only 2 planets, underwent instability for stellar spin periods below ~3 days and stellar tilts of order 30 degrees. (Abstract excerpts)

Spohn, Tilman. Special Issue: Planetary Evolution and Life. Planetary and Space Science. 98/1, 2014. An introduction to this edition with six co-editors including Helmut Lammer and Frances Westall as we Earthlings began our near and far cosmic census of habitable ecobiospheres. With this home world as a measure, the 21st century project going forward involves quantifying an array of features such as core composition, geochemistry, outgasings, atmospheres, mantle hydration, and much more. See for example herein Plate Tectonics on Rocky Exoplanets, Earth-Like Habitats in Planetary Systems, and Biotic vs. Abiotic Earth. But an inkling seems to carry through the papers that this precious animate orb looks increasingly special and maybe unique.

Stern, Robert J.. Is Plate Tectonics Needed to Evolve Technological Species on Exoplanets? Geoscience Frontiers. 7/4, 2016. The UT Dallas geoscientist states a thorough case why a long term, global surface condition of relatively balanced, mobile land and ocean ratios is a vital necessity for life to make it all the way from single cells to a sapient species able to learn this and begin to look outward. See also Stagnant Lid Tectonics: Perspectives from Silicate Planets, Dwarf Planets, Large Moons, and Large Asteroids by the author in this journal (9/2, 2018).

Stern, Robert J.. The Evolution of Plate Tectonics. Philosophical Transactions of the Royal Society A. Vol.376/Iss.2132, 2018. Plate tectonics is a very unusual convective style for a silicate planet. All other active silicate bodies are encased in a single lithospheric lid. (17). In a Earth Dynamics and the Development of Plate Tectonics issue, the UT Dallas geoscientist reconstructs ancient crustal comings and goings in graphic stages of asthenosphere and lithosphere convections and subductions. Comparisons are made to single lid Venus and Mars, along with Europa and Io moons. Only Earth has a mobile, “fragmented” mantle, which then has major influences on animal evolution. Amongst the 15 papers are Magma Oceans as a Critical Stage in Tectonics, Biogeodynamics, and Geological Archive of Plate Tectonics. A century after its discovery by Alfred Wegener (1880-1930), the edition achieves a comprehensive noosphere verification. See also Biogeodynamics: Bridging the Gap between Surface and Deep Earth Processes by Aubrey Zerkle in this collection.

To understand how plate tectonics became Earth's dominant mode of convection, we need to address three related problems. (i) What was Earth's tectonic regime before the present episode of plate tectonics began? (ii) Given the preceding tectonic regime, how did plate tectonics become established? (iii) When did the present episode of plate tectonics begin? The tripartite nature of the problem complicates solving it, but, when we have all three answers, the requisite consilience will provide greater confidence than if we only focus on the long-standing question of when did plate tectonics begin? Earth probably experienced episodes of magma ocean, heat-pipe, and increasingly sluggish single lid magmatotectonism. A Neoproterozoic transition (~1,000 to 540 mya) from single lid to plate tectonics also explains kimberlite ages, the Neoproterozoic climate crisis and the Neoproterozoic acceleration of evolution. (Abstract excerpt)

Stevens, Adam, et al. Observational Signatures of Self-Destructive Civilizations. International Journal of Astrobiology. Online October, 2015. Since Earth life seems threatened by nuclear annihilation, bioterrorism, planetary pollution, asteroids, runaway technology, and much more, British astrophysicists including Duncan Forgan contend that extraterrestrial intelligent civilizations will likewise be prone to “total planetary destruction.” Somewhat akin to Jason Wright, et al herein about signs of astroengineering, since this might be an inevitable demise, the archaeological detection of their remains could help answer the issue of the prevalence or absence of other lifekind.

We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. (Abstract)

Stevenson, David. Planetary Diversity. Physics Today. April, 2004. An introduction to a special issue on why the scientific study of how planets form has come into recent prominence. Foremost is the ability to detect by observation and inference the presence of many extrasolar planets, along with a growing understanding of extraterrestrial geology and atmospheres. From these advances a wider definition of what constitutes a planetary object has occurred. Stevenson goes on to imagine that a Darwinian selection might apply whereby planetary accretion by angular momentum seeks out all possible solar orbital niches. In this view, only a precious few such our Earth might become fertile with sentient life.

Stevenson, David S.. Planetary Mass, Vegetation Height and Climate. International Journal of Astrobiology. Online January, 2019. The British biologist (search) continues his unique studies so as to add another factor that would affect the relative habitability of an Earth to super-Earth size planet. As the Abstract says, a preferred, optimum arboreal height is a necessity for floral and faunal life to devolve and develop.

The maximum height trees can grow on Earth is around 122–130 meters. The height is constrained by two factors: the availability of water, and where water is not limiting, the pressure available to drive the column of water along the xylem vessels against the pull of gravity. In turn the height of trees impacts the biodiversity of the environment in a number of ways. On Earth the largest trees are found in the maritime temperate Pacific Northwest coasts of northern California and southern Oregon. These forests provide many secondary habitats for species and serve as moisture pumps that return significant volumes of water to the lower atmosphere. In this work, we apply mathematical rules to show how super-terran planets will have significantly smaller trees, with concomitant effects on the habitability of the planet. (Abstract)

[Prev Pages]   Previous   | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13  Next