![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator LifescapeI. Our EarthMost Distinction: A Rare Planetary Confluence of Favorable Conditions for Life in Person
Herbort, Oliver, et al.
Habitability constraints by nutrient availability in atmospheres of rocky exoplanets.
arXiv:2404.04029.
University of Vienna, Austrian Academy of Sciences, and Marble Space Institute of Science, USA astroresearchers provide one more finely cast factor as just the right bioatomic mix in a watery solvent and moist air so as to engender relative organic combinations. Life as we know it requires liquid water and nutrients, which are mainly based on the elements C, H, N, O, P, and S and trace metal micronutrients. In this paper we introduce a framework of nutrient availability levels based on the presence of water condensates and the chemical state of the CHNOPS elements.. The atmospheric model is a bottom-to-top equilibrium chemistry phase which includes the atmosphere-crust interaction and the element depletion due to the formation of clouds. While the reduced forms of CNS are present at the water cloud base for most atmospheric compositions, P and metals are lacking. (excerpt) Hoang, John, et al. Exploring the Use of Generative AI in the Search for Extraterrestrial Intelligence (SETI). arXiv:2308.13125. In the context of the Breakthrough Listen project, Yale, Ohio State, Toronto, and UC Berkeley computer scientists propose to integrate and advance prior surveillance methods with deep language learning with capabilities. The search for extraterrestrial intelligence (SETI) is a field that has long been within the domain of traditional signal processing techniques. However, with the advent of powerful generative AI models, such as GPT-3, we are now able to explore new ways of analyzing SETI data and potentially uncover previously hidden signals. In this work, we present a novel approach for using generative AI to analyze SETI data, with focus on data processing and machine learning techniques. Our proposed method uses a combination of deep learning and generative models to analyze radio telescope data, with the goal of identifying potential signals from extraterrestrial civilizations. Holmes, Bob. The Goldilocks Planet. New Scientist. March 23, 2019. A science writer makes a case that the presence of a Gaian self-maintaining biosphere should be seen as another major reason why this Earth is uniquely viable in the cosmos. Three properties are here cited that help this to happen – redundancy, diversity, and modularity – along with niche construction, group selection, and more. As far as we know, Earth is a one-off: there is no population of competing, reproducing planets for natural selection to choose between to form the next generation. And yet, like a superorganism honed by evolution, Earth seems to self-regulate in ways that are essential for life. Oxygen levels have remained relatively constant for hundreds of millions of years, as has the availability of key building blocks of life such as carbon, nitrogen and phosphorus. Crucially, Earth’s surface temperature has remained with the narrow range that allows liquid water to exist. (35) Hong, Yu-Cian, et al. Innocent Bystanders: Orbital Dynamics of Exomoons during Planet-Planet Scattering. arXiv:1712.06500. We note this entry by Hong, Philip Nicholson, and Jonathan Lunine, Cornell University, and Sean Raymond, University of Bordeaux because, as the Abstract cites, it gives a sense of how involved, chancy and chaotic the formation of long duration, evolutionary bioworlds seems to be. This may be why, we muse, on a statistical basis the universe needs a quintillion candidates so that at least one fittest Earth-like planet might be able to self-discover, realize and select. Horner, Jonathan, et al. The Influence of Jupiter, Mars and Venus on Earth’s Orbital Evolution. arXiv:1708.03448. Australian and British astroscientists including David Waltham consider still another closely finessed attribute of this solar system which is necessary for an extended benign period of Earth life evolution. n the coming years, it is likely that the first potentially Earth-like planets will be discovered orbiting other stars. Once found, the characterisation of those planets will play a vital role in determining which will be chosen as the first targets for the search for life beyond the Solar System. One of the plethora of factors to be considered in that process is the climatic variability of the exo-Earths in question. In the Solar System, the Earth's long-term climate is driven by several factors, including the modifying influence of life on our atmosphere, and the temporal evolution of solar luminosity. The gravitational influence of the other planets in the Solar System adds an extra complication, driving the Milankovitch cycles (2nd quote) that are thought to have caused the on-going series of glacial and interglacial periods that have dominated Earth's climate for the past few million years. Our results illustrate how small changes to the architecture of a given planetary system can result in marked changes in the potential habitability of the planets therein, and are an important first step in developing a means by which the nature of climate variability on planets beyond our Solar System can be characterised. (Abstract)
Jiang, Jonathan, et al.
Avoiding the Great Filter: Predicting the Timeline for Humanity to Reach Kardashev Type I Civilization.
Galaxies.
May 12,
2022.
Seven scholars from the USA and China exercise a study of how and when our whole planetary abide might sufficiently be able to sustain itself. But on June 1, 2022 national sovereignties seem obsessed with nuclear war. Maybe the final test is not about such material aspects but need involve some Earthwise awake, aware cognitive choice to stop fighting, peaceably unify and begin a common quest(ion). The level of technological development of any civilization can be gauged in large part by the amount of energy produced for its usage, along with their global stewardship of its home world. Following the (Nikolai) Kardashev definition, a Type I civilization is able to store and use all the energy available on its planet. In this study, we analyze three important energy sources: fossil fuels, nuclear, and renewable. We also consider environmental limitations specific to our calculations, to predict when humanity will reach the level of a Kardashev Scale Type I civilization. (excerpt) Joirot, Sarah. A race against the clock: Constraining the timing of cometary bombardment relative to Earth's growth. arXiv:2309.03954. Into later 2923 seven astroscientists from the University of Bordeaux, University of Paris, Johns Hopkins and Southwest Research Institute including Sean Raymond realize and quantify one more precarious parameter for life's occasion in the degree, composition and temporal frequency as vital components may bath these ancient phases. Comets are a potential source of inner solar system volatiles, but the timing of this delivery relative to Earth's accretion is poorly understood. Here, we evaluate whether dynamical simulations in the context of an Early Instability model. We perform dynamical simulations of the solar system, calculate the probability of collision between comets and Earth analogs component embryos through time and estimate the total cometary mass accreted in Earth analogs as a function of time. While our results agree with geochemistry, we also show that the contribution of comets might have been delayed with by the stochastic timing of an influx. These results emphasize the variable nature of the primordial solar system. (Excerpt) Jones, Barrie. The Search for Life Continued: Planets Around Other Stars. Berlin: Springer, 2008. The Open University astronomer provides a thorough, illustrated guide for the outward quest for animate worlds and entities across the galaxy and cosmos. This endeavor has taken on a new dimension with the ability to search for and detect similar earths orbiting distant suns. Their apparent proliferation provides another good reason that we are not alone and could inspire us earthlings to join in a sustainable initiative and destiny. Kaib, Nathan and Sean Raymond. Passing Stars as an Important Driver of Paleoclimate and the Solar System's Orbital Evolution. Astrophysical Journal Letters. 962/2, 2024. Planetary Science Institute, Tucson and University of Bourdeaux astrophysicists (search SR) are now able to add another ISM factor which could have had an effect on Earth life evolution. As the title and quotes say, interstellar traffic could brush by and influence atmospheric conditions long ago. Reconstructions of the paleoclimate indicate that ancient climatic fluctuations on Earth are often correlated with variations in its orbital elements. However, the chaos inherent in the solar system's evolution prevents numerical simulations from predicting Earth's past orbits beyond 50–100 Myr. Here we present simulations that include the Sun's nearby stellar population, and find that close-passing stars alter our entire planetary system's orbital history via gravitational perturbations of the giant planets. (Excerpt)
kaku, Michio.
The Future of Humanity: Terraforming Mars, Interstellar Travel, Immortality, and Our Destiny beyond Earth.
New York: Doubleday,
2018.
In his latest, visionary work the CCNY polyphysicist and science expositor imagines a stellar and universal vista looking outward and ahead. Three sections, Leaving the Earth, Voyages to the Stars, and Life in the Universe, proceed from our waning, doomed world to planetary and galactic habitations near and far, no longer as homo sapiens, and onto a cosmic abidance, maybe eternal, akin to Olaf Stapledon and Isaac Asimov. While a grand ride, it quite remains in the old mindset, or lack thereof, which cannot consider or allow an independent reality of which evolutionary life, intelligence and persons are a vital creative phenomenon. Its opening pages list scientists and scholars that Kaku has spoken with over years, but its ratio of men to women runs 25 to 1. Michio Kaku traverses the frontiers of astrophysics, artificial intelligence, and technology to offer a stunning vision of man's future in space, from settling Mars to traveling to distant galaxies. Formerly the domain of fiction, moving human civilization to the stars is increasingly becoming a scientific possibility and necessity. Whether in the near future due to climate change and the depletion of finite resources, or in the distant future due to catastrophic cosmological events, we must face the reality that humans will leave planet Earth to survive as a species. Michio Kaku reveals how nanotechnology, and biotechnology may allow us to terraform and build habitable cities on Mars. He then takes us beyond the solar system to nearby stars, which may be reached by nanoships traveling on laser beams at near the speed of light. Finally, he brings us beyond our galaxy, and even beyond our universe, to the possibility of immortality, showing us how humans may someday be able to leave our bodies entirely and laser port to new havens in space. (Publisher edits) Kasting, James. The Goldilocks Planet? How Silicate Weathering Maintains Earth “Just Right”. Elements. 15/4, 2019. Two decades into the 21st century, the senior Penn State University geoscientist is can now reconstruct the past history of Earth's variable chemical composition so to realize that this surface condition might be most suitable for life to uniquely appear, evolve and persist Earth's climate is buffered over long timescales by a negative feedback between atmospheric CO2 level and surface temperature. The rate of silicate weathering slows as the climate cools, causing CO2 to increase and warming the surface through the greenhouse effect. This buffering system has kept liquid water stable at Earth's surface. Most silicate weathering is thought to occur on the continents today, but seafloor weathering may have been equally important. Kodama, Takanori, et al. Inner Edge of Habitable Zones for Earth-sized Planets with Various Surface Water Distributions. Journal Geophysical Research Planets.. Online August, 2019. University of Bordeaux, University of Tokyo, Japan Agency for Marine-Earth Science, and Tokyo Institute of Technology researchers find that the occasion global oceanic presence, which is vital for life to form and evolve, is actually a rare, chancy situation which often shifts to an all wet or dry regime due to many celestial forces.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |