![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
IV. Ecosmomics: Independent Complex Network Systems, Computational Programs, Genetic Ecode ScriptsA. A Procreative Ecode: An Ecosmome to Geonome Complementary Hereditary Endowment Castro, Daniel, et al. Interdependent scaling exponents in the human brain. arXiv:2411.09098. Universidade Federal de Pernambuco, Recife, Brazil and Dutch Institute for Emergent Phenomena, University of Amsterdam neuroscientists add a physical depth to complex network system studies by way of renormalization theories. By so doing, a further exposition and evidence of pervasive self-organized criticalities which enhance cerebral functions and faculties is achieved. See also In and Out of Criticality? State-Dependent Scaling in the Rat Visual Cortex by Daniel Castro, et al in PRX Life (2/023008, 2024). We apply renormalization group (RG) theories to resting-state fMRI imagings of brain activity in a large population. By recursively coarse-graining the data, we compute scaling exponents for the series variance, log probability of silence, and covariance eigenvalues. We find a significant correlation of exponent values with the gray matter volume and cognitive performance. Akin to scaling relations near critical points in thermodynamics, our findings suggest that scalar interdependencies are intrinsic to brain organization and may also exist in other complex systems. (Abstract) Castro, Daniel. et al. In and Out of Criticality? State-Dependent Scaling in the Rat Visual Cortex. PRX Life. 2/023008, 2024. In this new Physical Review journal, eight Universidade Federal de Pernambuco, Recife, Brazil and University of Minho, Braga, Portugal system physicians add a latest appreciation of how our cerebral processes indeed do seem to bounce around a best performance balance. A presumed proximity to a critical point is believed to endow the brain with scale-invariant statistics to confer advantages for information processing, storage, and transmission. To assess scaling and cortical states, we apply a renormalization group method to data recordings from the anesthetized rat's visual cortex. Under anesthesia, cortical states shift across synchronization levels defined by population spiking rate variability. We find that scaling signatures only appear as spiking frequency surpasses a threshold. Our results suggest that a wide range of cortical states corresponds to small deviations around a critical point, with the system fluctuating in and out of criticality, spending roughly three-quarters of the experiment duration within a scaling regime. (Abstract excerpt) Chen, Lei, et al. Metallic Quantum Criticality Enabled by Flat Bands in a Kagome Lattice. arXiv:2307.09431.. As the quotes convey, Rice University Center for Quantum Materials, Vienna University of Technology and SUNY Stony Brook physicists including Jennifer Cano and Silke Paschen delve deeply into these substantial realms and scientific features to reveal still another exemplary statement of nature’s optimum self-organized balance. See also Quantum Criticality Enabled by Intertwined Degrees of Freedom by this group for a broader version in PNAS. (120/30, 2023.) Strange metals arise in a variety of platforms for strongly correlated electrons, ranging from the cuprates, heavy fermions to flat band systems. We study a Hubbard model on a kagome lattice so as to construct a Kondo lattice description. We identify a Mott transition with a quantum critical point at which quasiparticles a strange metallicity emerges. Our theoretical work opens up a new route for realizing beyond-Landau quantum criticality and novel quantum phases that it nucleates. (Excerpts) Chen, Luyao, et al. AI of Brain and Cognitive Sciences: From the Perspective of First Principles. arXiv:2301.08382. Sixteen Chinese length scholars under the auspices of the AI of Brain and Cognitive Sciences Research Group, Beijing Academy of Artificial Intelligence, and Beijing University post an array of chapters, per the first quote, in an effort to advance AI abilities by better appreciations of how our own cerebral faculties have actually formed and well function. Our main interest is Criticality: Bringing New Perspectives to the Brain and AI, which gathers and presents an extensive, latest survey as this realization lately gains a wide, quantified acceptance. The two longer quotes are from this section. This paper collects six such first principles summarized by the research team, “AI of Brain and Cognitive Sciences”, in the Beijing Academy of Artificial Intelligence (BAAI). They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development. Chen, Qianyang and Mikhail Prokopenko. Why collective behaviours self-organise to criticality: A primer on information-theoretic and thermodynamic utility measures. arXiv:2409.15668. Centre for Complex Systems, University of Sydney physicists (search MP) contribute a further qualification of nature’s apparent whole scale persistence to arrange itself across every infinity by way of this critical poise, best balance, optimum state of more or less order. See also Biological Arrow of Time by Mikhail Prokopenko, et al (arXiv:2409.12029) for another instantiation as a revolutionary ecosmic natural genesis universe just now becomes a profound reality.
Cheraghalizadeh, J., et al. Simulating Cumulus Clouds Based on Self-Organized Criticality. arXiv:2211.06111. University of Mohaghech Ardabili, Iran and ETH Zurich physicists advance recent findings that even such weather conditions can be found to take on and exhibit this intrinsic phenomenal preference. In regard, this widespread, exemplary occasion of a SOC viability strongly indicates an independent source which is universally inl manifest effect. Recently it was shown that self-organized criticality is an important ingredient of the dynamics of cumulus clouds (Physical Review E, 103(5), 2021). Here we introduce a new algorithm to simulate cumulus clouds in two-dimensional square lattices, based on the cohesive energy of wet air parcels and a sandpile-type diffusion of cloud segments. We observed that the cloud fields that we obtain from our model are fractal, with the outer perimeter having a fractal dimension. (Excerpt) Ciaunica, Anna, et al. Nested Selves: Self-Organization and Shared Markov Blankets in Prenatal Development in Humans.. PsyArixiv Preprints, May 2023. We review this post by AC, University of Lisbon, Michael Levin, Tufts University, Fernando Rosas, University of Sussex, and Karl Friston, University College London (search each) as they move on to a unique perception that life’s embryonic stage can be rightly viewed as a self-organizing process. Into 2023, this occasion becomes evident within a biological self-making milieu and a newly fertile physical basis. So once more, along with Autorino and Petridou, a true evolutionary gestation takes credence as a genesis synthesis. The immune system is a central component of organismic function in humans. This paper addresses self-organisation of a biological system in relation to — and nested within — an other biological system in pregnancy. Indeed, the hierarchical relationship in pregnancy reflects an earlier autopoietic process in the embryo by which the number of individuals in a single blastoderm is determined by cell-cell interactions. Specifically, we consider the role of the immune system in biological self-organisation in addition to neural/brain systems that furnish us with a sense of self. In pregnancy, two immune systems need to exchange resources and information to maintain viable self-regulation of nested systems. We then propose mechanisms that scaffold tise complex relationship through the lens of the Active Inference, with a focus on shared Markov blankets. (Abstract excerpt)) Ciss, Mamadou, et al. Description of the Cattle and Small Ruminants Trade Network in Senegal.. arXiv:2301.11784. We cite as another instance by Senegalese, French and British system veterinaries of how a mature awareness of common, implicate nonlinear lineaments in universal effect can provide an implicate guidance even for the distribution and maintenance of indigenous herd animals. Livestock mobility of small and large ruminants, is a main pillar of production and trade in West Africa. These movements cover several thousand kilometers and connect the whole West African region. But this activity also leads to the diffusion of many animal and zoonotic diseases. In this paper, we present a procedure based on temporal network theory to identify possible sentinel locations using two indicators: vulnerability (i.e. the probability of being reached by the disease) and time of infection (i.e. the time of first arrival of the disease). (Excerpt) Dresp-Langley, Birgitta. The Grossberg Code: Universal Neural Network Signatures of Perceptual Experience. Information. 14/2, 2023. A Strasbourg University, Center for National Scientific Research neuroscholar (search) post a succinct review of Stephen Grossberg’s opus Conscious Mind, Resonant Brain (2022) along with a detailed, sequential expansion of its integral invariance from universe to us as we learn. See also her paper The Weaponization of Artificial Intelligence: What the Public Needs to be Aware Of in Frontiers in Artificial Intelligence (6/115484, 2023).
Faber, Justin and Dolores Bozovic.. Criticality and Chaos in Auditory and Vestibular Sensing.. arXiv:2311.02280.. While these dual inner ear aspects have been known as critically attuned for some time, here, re UCLA neurophysicists provide a latest theoretic and empirical verification. With regard to our website content, still another strong, functional instance is noted where even i the way we hear sounds and keep steady resides in a optimum self-organized critical state. The auditory and vestibular (sense of balance) systems exhibit a high temporal acuity and frequency selectivity, allowing us to make sense of the noisy world around us. Since this acoustic environment spans several orders of magnitude in amplitude and frequency, these complementary activities rely on nonlinearities, power-law scaling, chaos, and dynamical systems theory, with many relevant phenomena described by critical behavior. (Excerpt) Frolov, Nikita and Alexander Hramov. Self-Organized Bistability on Scale-Free Networks. arXiv:2211.06111. In this litany of SOC occurrences, Center for Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, scientists identify still another instance by way of extreme human cerebral states which takes on this double bilateral dynamic mode. (by whatever lights then might such endemic findings be applied to cease insane warfare) A dynamical system approaching the first-order transition can exhibit a critical behavior known as self-organized bistability SOB which can switch between oexisting states under self-tuning of a control parameter. Here, we theoretically explore an extension of the SOB concept on the scale-free network which originates from facilitated criticality macro- and mesoscopic levels. The spatial self-organization and temporal self-similarity of the critical dynamics then replicates epileptic seizure recurrences. Thus our proposed conceptual model can deepen the understanding of emergent collective behavior behind neurological diseases. (Excerpt) Gao, Chong-Yu and Jun-Jie Wei. Scale-invariant Phenomena in Repeating Fast Radio Bursts and Glitching Pulsars. arXiv:2401.13916. As the Abstract says, Purple Mountain Observatory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei astrophysicists report a seemingly ubiquitous tendency for active astronomical phenomena to persist in a dynamic self-similar criticality. See also Distributions of energy, luminosity, duration, and waiting times of gamma-ray burst pulses with known redshift detected by Fermi/GBM at arXiv:2401.14063 and The Self-organized Criticality Behaviors of Two New Parameters in SGR J1935+2154 at arXiv:2401.05955. The recent discoveries of a glitch/antiglitch accompanied by fast radio burst (FRB)-like bursts from the Galactic magnetar SGR J1935+2154 have revealed the physical connection between the two. In this work, we study the statistical properties of radio bursts from the hyperactive repeating source FRB 20201124A. We confirm that the probability density fluctuations of energy, peak flux, duration, and waiting time well follow the Tsallis q-Gaussian distribution. Similar scale-invariant property can be found in PSR B1737--30's glitches. These statistical features can be well understood within the same physical framework of self-organized criticality systems. (Excerpt)
Previous 1 | 2 | 3 | 4 | 5 | 6 Next
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |