|
V. Life's Corporeal Evolution Develops, Encodes and Organizes Itself: An Earthtwinian Genesis Synthesis2. Microbial Colonies Ben Jacob, Eshel, et al. Bacterial Linguistic Communication and Social Intelligence. Trends in Microbiology. 12/8, 2004. An update on the discovery that microbes not only live in self-organized, hierarchical, cooperative communities, but express a collective modicum of intelligence. We note once again that this prokaryotic realm provides an archetypal example of the universal complex system at work which persistently develops toward emergent, individual cognizance. Ben-Jacob, Eshel. Bacterial Self-organization. Philosophical Transactions of the Royal Society of London A. 361/1283, 2003. Ben-Jacob further articulates how the busy microbes provide an exemplary expression of complex emergence at work. What is notable is that at this elementary phase, both for evolution and living systems, the incentive to organize into larger groups actually enhances the welfare of its members, a good example early on of creative union. In an Epilogue he goes on to suggest that cognitive processes are a similar case of self-generated, cooperative freedom. The ‘smart’ bacteria have ‘realized’ (over evolution) that increasing informative communication between individuals results in increased freedom and cooperation of the individuals. (1285) Ben-Jacob, Eshel. Bacterial Wisdom, Godel’s Theorem and Creative Genomic Webs. Physica A. 248/57, 1998. Tel Aviv University biologist Ben-Jacob is a pioneer in applying complexity principles to the microbial realm. The “complex colonial patterning as an example of adaptive self-organization” is seen to possess self-reference, information, and a modicum of awareness. As an assembly of microbes interact with “mutual dependence” through a common “language,” they give rise to a distinct communal “self.” My proposed solution to the above paradox (Darwinism vs. Vitalism) leads to a new evolutionary picture where progress is not the result of successful accumulation of mistakes in replication of the genetic code, but is rather the outcome of designed creative processes. (58) Ben-Jacob, Eshel. Learning from Bacteria about Natural Information Processing. Annals of the New York Academy of Science. Vol. 1178, 2009. In the edition Natural Genetic Engineering and Natural Genome Editing, an exemplary paper from the Tel Aviv University biophysicist upon how well microbial colonies imbue and epitomize complex, self-organizing, modular networks. By these reciprocities they achieve a modicum of social intelligence that displays a distributed, neural-like cognition and collective decision making, indeed a colonial “super-brain.” Ben-Jacob, Eshel, et al. Bacterial Survival Strategies Suggest Rethinking Cancer Cooperativity. Trends in Microbiology. 20/9, 2012. Biophysicists Ben-Jacob, Tel-Aviv University, Herbert Levine, Rice University, and Donald Coffey, Johns Hopkins School of Medicine, each a noted authority, make a strong case for affinities between microbial collectives and cancerous cells, based on recent findings. As this section documents, bacterial communities are often seen as iconic self-organizing complex adaptive systems, with an especial knack for intelligent responses. Since tumors are likewise perceived as “smart social cells,” they might be treatable in similar ways to the design of drugs for bacterial and viral infections. A companion post is “How Brainless Slime Molds Redefine Intelligence” by Ferris Jabr (2012 herein) Despite decades of a much improved understanding of cancer biology, we are still baffled by questions regarding the deadliest traits of malignancy: metastatic colonization, dormancy and relapse, and the rapid evolution of multiple drug and immune resistance. New ideas are needed to resolve these critical issues. Relying on finding and demonstrating parallels between collective behavior capabilities of cancer cells and that of bacteria, we suggest communal behaviors of bacteria as a valuable model system for new perspectives and research directions. Understanding the ways in which bacteria thrive in competitive habitats and their cooperative strategies for surviving extreme stress can shed light on cooperativity in tumorigenesis and portray tumors as societies of smart communicating cells. (Abstract) Ben-Jacob, Eshel, et al. Cooperative Self-Organization of Microorganisms. Advances in Physics. 49/4, 2000. A book-length article on how bacteria occur not as isolated particles but survive and flourish in spontaneous communities formed by communication networks. These researchers believe that such dynamic, fractal-like assemblies imply common, underlying principles. Only during the last decade has a satisfying answer started to emerge. Exciting new developments in the understanding of pattern determination in condensed matter systems offer the promise that a unified theoretical framework is possible. (397) Biswas, Kuheli and Naama Brenner. Universality of phenotypic distributions in bacteria. Physical Review Research. 6/L022043, 2024. We record this paper in a physics journal by Network Biology Research Laboratory, Technion - Israel Institute of Technology bioengineers as an exemplary verification this year of a recurrent consistency which distinguishes this vast prokaryotic phase. Once again, a doubleness of an overt domain which arises from and is guided by an independent ecode source is quite evident. Some phenotypic properties in bacteria exhibit recurrent statistics, with distributions collapsing under scaling. The extent and origins of such a universality are not well understood. By way of models for growth and division, we identify compound “shape factors” that describe the distributions throughout a large set of single-cell data. We find that the emergence of common distributions is associated with robust shape factors across many conditions which explain the universal cell sizes, and highly expressed protein content. Boedicker, James and Kenneth Nealson. Microbial Communication via Quorum Sensing. IEEE Transactions on Molecular, Biological and Multi-Scale Communications. 1/4, 2015. A University of Southern California physicist and a biologist finesse appreciations of how bacteria survive and flourish in quite democratic associations. Chemical communication enables microbes to probe local cell density and coordinate collective behavior through a process known as quorum sensing (QS). In QS, microbes produce and detect small molecule signals, and the expression levels of many genes change in response to these signals. QS signals, known as autoinducers, potentially accumulate around the cell and relay information about environmental conditions, transport dynamics, and the number and identity of microbial neighbors. In this paper, we focus on the history of QS, the variety of molecular networks used by microbes to achieve QS, modeling approaches, and applications of QS control. (Abstract) Bown, J. L., et al. Evidence for Emergent Behavior in the Community-Scale Dynamics of a Fungal Microcosm. Proceedings of the Royal Society of London B. 266/1947, 1999. How cooperative agents are at work everywhere give rise to higher-level organizations. Bridges, Alice, et al.. Bumblebees socially learn behaviour too complex to innovate alone. Nature. March, 2024. Seven social biologists mainly at Queen Mary University of London including Lars Chittka demonstrate ways to extend life’s prevalent impetus for collaborative, informed societies all the way to invertebrate insects. Culture refers to behaviours that are commonly learned and persist within a population over time. It has been found that animal culture can also be cumulative. Here we show that even bumblebees can learn from trained demonstrator bees to obtain food rewards, even though they fail to do so on their own. This suggests that social learning might permit the acquisition of behaviours too complex to ‘re-innovate’ through individual learning. (Excerpt) Brown, Samuel and Rufus Johnstone. Cooperation in the Dark: Signalling and Collective Action in Quorum-Sensing Bacteria. Proceedings of the Royal Society of London B. 268/961, 2001. A pervasive dialogue amongst microbes goes on in order to insure community survival in changing environments. Bublitz, DeAnna, et al. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell. 179/1, 2019. We cite this entry by eleven Caltech, University of Montana, and University of Sheffield, UK scientists including John McCutcheon for its recognition of how much endosymbiotic structures and processes are in primary effect. A notice Cell Bacteria Mergers Offer Clues to How Organelles Evolved by Vivane Callier in Quanta Magazine (October 3, 2019) cites an import of this work.
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Next
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |