(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

V. Life's Corporeal Evolution Develops, Encodes and Organizes Itself: An Earthtwinian Genesis Synthesis

2. Microbial Colonies

Pichards, Thomas, et al. Single Cell Ecology. Philosophical Transactions of the Royal Society B. 374/2019.0076, 2019. An introduction to a special issue of papers from a December 2018 two day meeting as multicellular, mammalian human beings collectively proceed to confer, quantify and reconstruct about how early life came to arise from prokaryote bacteria and eukaryote nucleates. We note Multicellular Behavior Enables Cooperation in Microbial Cell Aggregates by Ali Ebrahimi, et al, A Single-Cell Genome Perspective on Intracellular Associations in Eukaryotes by Tomas Tyml, et al, and Combining Morphology, Behavior and Genomics to Understand the Evolution and Ecology of Microbes.

This Single Cell Ecology interdisciplinary meeting will explore the use of single cell technologies to understand the function, diversity and interactions of microbes. By bringing together physicists who manipulate cells, microbiologists who seek to understand the nature of microbial communities and genomicists who are developing new approaches to study individual cells we will achieve a greater understanding of the potential of this new field. (Original 2018 abstract)

Puri, Devina and Kyle Allison. Escherichia coli self-organizes developmental rosettes. PNAS. 121/23, 2024. Emory University and Georgia Institute of Technology biomedical engineers are able to discern the further presence of these cellular metabolic patternings in a prokaryotic microbe. Akin to embryonic somitogenesis, living systems of every kind are being found to to arrange and array themselves by way of iconic similarities.

Rosettes are self-organizing, circular multicellular communities that initiate developmental processes like organogenesis and embryogenesis in complex organisms. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. We went on to show that proper rosette formation was required for morphogenesis of multicellular chains, rpoS gene expression, and hydrostatic clonal-chain biofilms. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology. (Excerpt)

Rainey, Paul and Katrina Rainey. Evolution of Cooperation and Conflict in Experimental Bacterial Populations. Nature. 425/72, 2003. Laboratory studies find a deep tendency to form higher levels of multi-cellular complexity and individuality.

Roy, Anjan, et al.. A Unifying Autocatalytic Network-based Framework for Bacterial Growth Laws. Proceedings of the National Academy of Sciences. 118/33, 2021. Ben-Gurion University of the Negev and Abdus Salam International Center for Theoretical Physics, Trieste identify how such self-assembly processes are in common metabolic effect across the prokaryotic domains. See also Growth-laws and Invariants from Ribosome Biogenesis in Lower Eukarya by Sarah Kostinski and Shlomi Reuveni at arXiv:2008.11697.

In the clash between the physics-inspired strive for simple underlying laws of bacterial physiology and the biological hard-won understanding of the intricacies of life, we end in a middle ground. On one hand, we have found valid and simple growth laws. On the other hand, we demonstrated that the validity of a given growth law does not fully reveal the physiological state of the cell. Understanding how the cellular state is determined in response to internal and external cues, and how evolutionary stresses shaped different schemes for determining it, remains a formidable challenge. (10)

Sapp, Jan. The New Foundations of Evolution. Oxford: Oxford University Press, 2009. The York University biologist and historian, in collaboration with Carl Woese who writes a Foreword, achieves a novel extension and rooting of life's evolutionary "tree" and taxonomy in the vast prokaryotic microbial realms as revealed by the latest science of "molecular phylogenetics."

Schleper, Christa and Filipa Sousa. Meet the Relatives of Our Cellular Ancestor. Nature. 577/519, 2020. University of Vienna, Archaea Biology and Ecogenomics Group bioscientists cite a paper, Isolation of an Archaeon at the Prokaryote-Eukaryote Interface by Hiroyuki Imachi, et al in the same issue, as a significant quantification of how rudimentary microbal cells seem to have internal propensity (drive) to become nucleated cells on their long course to multicellularity.

Microorganisms related to lineages of the Asgard archaea group are thought to have evolved into complex eukaryotic cells. Now the first Asgard archaeal species to be grown in the laboratory reveals its metabolism and cell biology.

Shapiro, James. Thinking about Bacterial Populations as Multicellular Organisms. Annual Review of Microbiology. 52/81, 1998. James Shapiro of the University of Chicago and its Complex Adaptive Systems Ecology consortium has long advocated the cooperative view of bacterial colonies. In this chapter, microbial genetic networks are seen to contrast with particulate genes as quantum physics is to classical mechanics.

Sheldrake, Merlin. Entangled Life: How Fungi Make Our Worlds, Change Our Minds & Shape Our Futures. New York: Random House, 2021. The author has a doctorate in biology from Cambridge University and is now a researcher at the Free University of Amsterdam, amongst many other endeavors For more about him and his luminous family see The Man Who Turned the World on to the Genius of Fungi by Jennifer Kahn in the New York Times (June 6, 2023, herein). Well informed and written chapters include Living Labyrinths, Mycellial Minds, and Wood Wide Web which, akin to Suzanne Simard’s Finding the Mother Tree, scope out this unknown. vibrant intimacy that sustains forest and field and our own fungal-like expression.

Shis, David, et al. Dynamics of Bacterial Gene Regulatory Networks. Annual Reviews of Biophysics. 47/447, 2018. Rice University bioscientists press on with revolutionary noticea of how ubiquitous interconnective topologies grace and serve all manner of organisms. A typical section is Mathematical and Computational Modeling of Biochemical Networks. Circa 2018, such articles can display an holistic sequence across natural scales, herein from protons to proteins, bacteria, colonies, microbiome organisms, and onto ecologies. A grand iterative progression is just now being completed by our worldwise collaborations. See also Gerstein 2018 in Annual Review of Biomedical Data Science for another example.

The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. (Abstract)

Shishkov, Olga and Orit Peleg. Social Insects and Beyond: The Physics of Soft, Dense Invertebrate Aggregations. arXiv:2206.11129. Since circa 2010 when this “active matter” milieu came into being (see its Ecosmos section) University of Colorado biobehavioral researchers here achieve a thorough review to date. A novel advance is an ability to perceive these many dynamic animate, and inorganic occasions as exemplary manifestation of deep physical phenomena such as phase transitions. See also Bacterial Active Matter by Igor Aranson in Reports on Progress in Physics (85/7, 2022) for similar work. A number of current surmises become notably apparent. Once again, an independent mathematic domain seems to be in generative effect at each and every instance from mold blobs to urban areas. In regard, an emergent 21st century worldwise sapience in these 2020s can thus finally accomplish a whole scale vista of a universal genesis as it may reach it’s vital self-recognition.

Aggregation is a common behavior by which organisms arrange into cohesive groups. Whether airborne (honey bee clusters), ground dwellers (army ant bridges), or in water (sludge worm blobs), these collectives serve vital functions, Here we survey a variety of insects, arthropods, and worms as active soft matte . A group can be much larger than its members yet exist as a coherent entity. We discuss how novel aggregation physics can add to insights from ecological and physiological considerations as entities exchange information, energy, and matter as if a super-organism. With this work, we seek to scope out the inherent collective physics of dense living aggregations. (OS excerpt)

Analogies between the formation of aggregations of invertebrates to phase separation of non-living particles reveal unique properties of living aggregations. Wild-type C. elegans worms align through collisions with one another to aggregate into a nematic (oriented) phase. The process by which sludge worms water assemble into a blob is similar to polymer phase separation. These examples highlight the similarities and differences between living aggregations and non-living materials. (11)

Bacteria colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. Suspensions of motile bacteria provide a good model of active matter as a broad class of non-equilibrium systems converting energy from the environment into motion. Concentrated suspensions, often termed active fluids, exhibit complex collective behavior such as turbulent-like swarming. The paper discusses microbial motilities from a deep physics viewpoint by way of experiments, main theories, and how visco-elasticity, liquid crystallinity, and confinement effect collective behaviors. (Aronson excerpt)

Sirota-Madi, Alexandra, et al. Genome Sequence of the Pattern Forming Paenibacillus vortex Bacterium Reveals Potential for Thriving in Complex Environments. BMC Genomics. 11/710, 2011. A premier international team of sixteen research microbiologists, led by Eshel Ben Jacob of Tel Aviv University, provide an extensive report on the colonial intricacy and real cognitive facility of this candidate microbe. As a Scientific American news item “The Smartest Bacteria on Earth” (June 2011) notes, these networked communities exhibit a remarkable degree of social intelligence by which to survive and prosper in varied environments. A collective swarm intelligence is persistently evident. With a long bibliography, the article stands as a decade long consummation of these studies of bacterial groupings. As such, they can be appreciated as a prime, microcosmic example of complex, dynamic self-organization, a cooperative pattern and process which is iteratively repeated across life’s nested emergence.

Accomplishing such intricate cooperative ventures requires sophisticated cell-cell communication. Communicating with each other, bacteria exchange information regarding population size, a myriad of individual environmental measurements at different locations, their internal states and their phenotypic and epigenetic adjustments. The bacteria collectively sense the environment and execute distributed information processing to glean and assess relevant information. Next, the bacteria respond accordingly, by reshaping the colony while redistributing tasks and cell differentiations, and turning on defense and offense mechanisms, thus achieving better adaptability to heterogeneous environments. Such collective, decentralized, adaptive decision making is a form of swarm intelligence, a term originally derived from cybernetics but applicable to some aspects of colonial organisms including ants, birds, humans and bacteria. (4)

The P. vortex species is marked by its complex spatial organization of the colony, with the bacteria forming different patterns to better cope with the environment. Pattern-formation and self-organization in microbial systems is an intriguing phenomenon that might also provide insights into the evolutionary development of the concerted action of cells in higher organisms. Therefore, sequencing of the P. vortex genome paves the way to understanding of regulatory processes involved in cell-cell communication and colonial patterning and more generally, to understanding of cooperative bacterial response to changing environmental conditions. (11-12)

Stanley-Wall, Nicola, et al. A Snapshot of the Extraordinary World of Social Microbiology. Journal of Molecular Biology. 427/23, 2015. An introduction to a special issue on Cooperative Behavior in Microbial Communities. Typical papers are How Myxobacteria Cooperate, The Evolution of Aggregative Multicellularity and Cell-Cell Communication in the Dictyostelia, and Bacterial Networks in Cells and Communities, see Abstract below.

Research on the bacterial regulatory networks is currently experiencing a true revival, driven by advances in methodology and by emergence of novel concepts. The biannual conference Bacterial Networks (BacNet15) held in May 2015, in Sant Feliu de Guíxols, Spain, covered progress in the studies of regulatory networks that control bacterial physiology, cell biology, stress responses, metabolism, collective behavior and evolution. It demonstrated how interdisciplinary approaches that combine molecular biology and biochemistry with the latest microscopy developments, whole cell (-omics) approaches and mathematical modeling can help understand design principles relevant in microbiology. It further showed how current biotechnology and medical microbiology could profit from our knowledge of and ability to engineer regulatory networks of bacteria. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  Next