(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VI. Earth Life Emergence: Development of Body, Brain, Selves and Societies

2. Complex Local and Global Societies

Hall, Gavin and William Bialek. The Statistical Mechanics of Twitter. arXiv:1812.07029. As a global science proceeds on its electronic own, cross-informative networks are forming between widely separate fields. Here is an exemplary paper by Princeton University theorists which reports a connection in kind between webwide social chatter and physical dynamics. It is noted that this public verbose media tends to critical attractor modes. Once more across a broad stretch from uniVerse to usVerse, a common, recurrent, biterate conservation and discourse goes on. See also Searching for Collective Behavior in a Small Brain by W. Bialek and colleagues (1810.07623).

We build models for the distribution of social states in Twitter communities which can be defined by the participation vs. silence of individuals in conversations that surround key words. We approximate the joint distribution of these binary variables using the maximum entropy principle, finding the least structured models that match the mean probability of individuals tweeting and their pairwise correlations. These models provide accurate, quantitative descriptions of higher order structure in these social networks. The parameters of these models seem poised close to critical surfaces in the space of possible models, and we observe scaling behavior of the data under coarse-graining. These results suggest that simple models, grounded in statistical physics, may provide a useful point of view on the larger data sets now emerging from complex social systems. (Abstract)

Hamilton, Marcus, et al. Nonlinear Scaling of Space Use in Human Hunter-Gatherers. Proceedings of the National Academy of Sciences. 104/4765, 2007. This report grew from research programs of James Brown’s group at the University of New Mexico, which studies biocomplexity, scaling and macroecology. It merits special notice because this work is one of the first quantifications of how human groupings take on the same patterns and processes as an organism. What can then be broadly implied is a nested biological continuity throughout emergent evolution, of which, as long proposed, human social community can be appreciated with isomorphic kinship to a somatic and cerebral organic entity.

Even though buried within the 200+ pages of a weekly scientific journal, the paper exemplifies a welling discovery by humankind of a profoundly different comprehensible nature and cosmos suffused by such universally recurrent mathematical form and function, a quickening genesis in our midst if we would attend to it, as this website is trying to document.

The result is a complex social structure in which resources flow through social networks, which exhibit self-similar or fractal-like hierarchical scaling and are strikingly similar, quantitatively, to the hierarchically branched vascular networks that distribute metabolic resources within the bodies of plants and mammals and water from river drainage basins. (4765) Our results demonstrate that individual space use in hunter-gatherer societies scales nonlinearly or allometrically with population size. Furthermore, this power-law scaling relation is robust to differences in trophic foraging niche, ecosystem temperature, energy availability, geographic location, and cultural phylogeny. (4768)

Hamilton, Marcus, et al. The Complex Structure of Hunter-Gather Social Networks. Proceedings of the Royal Society B. 274/2195, 2007. Researchers from the Universities of New Mexico and Chicago, and Santa Fe Institute, report that after many years of nonlinear studies, living systems from cells to cities can be known to spring from and be distinguished by the self-organizing dynamics of interactive entities. These propensities then proceed to create a nested, iterative societal scale. As the authors cite, this same phenomena occurs everywhere from physical and chemical phases to continental civilizations.

Science itself, via its male practitioners, is much about hunting and gathering. If to add some reflection (feminine right brain?), a greater reality just being revealed to human inquiry is not an alien morbidity but rather, as tradition teaches, graced by a stratified correspondence of microcosm and macrocosm, now found to be arrayed in a temporal genesis. A universality of animate form and dynamics, a 21st century theory of everywhere, would then imply an implicate, independent source. Our collaborative, bicameral work going forward is to brace and evoke such a life, person, and earth-affirming cosmology in the brief window we have to do so.

In nature, many different types of complex system form hierarchical, self-similar or fractal-like structures that have evolved to maximize internal efficiency. In this paper, we ask whether hunter-gatherer societies show similar structural properties. We use fractal network theory to analyze the statistical structure of 1189 social groups in 339 hunter-gatherer societies from a published compilation of ethnographies. We show that population structure is indeed self-similar or fractal-like… this remarkable self-similarity holds both within and across cultures and continents. We show that the branching ratio is related to density-dependent reproduction in complex environments and hypothesize that the general pattern of hierarchical organization reflects the self-similar properties of the networks and the underlying cohesive and disruptive forces that govern the flow of material resources, genes and non-genetic information within and between social groups. Our results offer insight into the energetics of human sociality and suggest that human social networks self-organize in response to similar optimization principles found behind the formation of many complex systems in nature. (2195)

Complex systems composed of multiple interacting parts tend to self-organize or evolve structures that maximize whole-system performance by optimizing the interactions among components. (2195) Our analyses show that not only are these societies internally self-similar, but also that this self-similarity is found across societies that differ widely in ecological, historical and genetic backgrounds. (2198)

Hamilton, Marcus, et al. The Ecological and Evolutionary Energetics of Hunter-Gather Residential Mobility. Evolutionary Anthropology. 25/3, 2016. . In an issue on Evolution of Human Mobility, a southwest, Santa Fe Institute, team of MH, Jose Lobo, Eric Ripley, Hyejin Youn, and Geoffrey West proceed to reconstruct this early phase by way of these qualitative aspects. See also by this group Nonlinear Scaling of Space Use in Human Hunter-Gatherers (PNAS 104/4765, 2007) and The Complex Structure of Hunter-Gatherer Social Networks (Proceedings of the Royal Society B 274/2195, 2007). And we wonder Whom is worldwise Anthropo/Cosmo Sapiens to retrospectively do this, what does it mean to realize that our daily, communal lives are moved and constrained by a mathematical independence?

Residential mobility is a key aspect of hunter-gatherer foraging economies and therefore is an issue of central importance in hunter-gatherer studies. Hunter-gatherers vary widely in annual rates of residential mobility. Understanding the sources of this variation has long been of interest to anthropologists and archeologists. The vast majority of hunter-gatherers who are dependent on terrestrial plants and animals move camp multiple times a year because local foraging patches become depleted and food, material, and social resources are heterogeneously distributed through time and space. In some environments, particularly along coasts, where resources are abundant and predictable, hunter-gatherers often become effectively sedentary. But even in these special cases, a central question is how these societies have maintained viable foraging economies while reducing residential mobility to near zero. (Abstract)

Hammerstein, Peter and Edward Hagen. The Second Wave of Evolutionary Economics in Biology. Trends in Ecology and Evolution. 20/11, 2005. In the 1970’s and 1980’s, biologists and economists borrowed concepts from each other such as optimal foraging theory, game theory, and analogies between adaptation by natural selection and rational decision making. But the two disciplines had little interaction. Recently a new phase of joint exploration has commenced which this article documents. One result is an appreciation of “a desire for prosocial outcomes that value the welfare of others.”

Hanson, F. Allan. The New Superorganic. Current Anthropology. 45/4, 2004. Prior concepts of “methodological individualism” or the old “superorganic” as a collective group are updated in terms of an “extended agency.” This revised view which draws on artificial intelligence to characterize human assemblies as fluid, variable, information processing activities, akin to neural networks.

Haven, Emmanuel and Andrei Khrennikov. Quantum Social Science. Cambridge: Cambridge University Press, 2013. In the past few years it has become evident, and acceptable to profess, that micro “quantum” phenomena, properly understood, exercise a creative effect for every macro, emergent phase. A University of Leicester economist and a Linnaeus University physicist broach how such a synthesis might proceed. An initial review of the physics and mathematics of quantum mechanics,, vector calculus, Bohmian theories, and more, sets up a tour of probabilistic interference in psychology, econophysics, social decision making, financial markets, and neuroscience. For another example see Quantum Effects in Biology by Masoud Mohseni, et al, due September 2014.

Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision-making paradoxes in psychology and used in modelling information in finance and economics. The book starts with a thorough overview of some of the salient differences between classical, statistical and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way. (Publisher)

Hemelrijk, Charlotte and Hanspeter Kunz. Introduction to Special Issue on Collective Effects of Human Behavior. Artificial Life. 9/4, 2003. Select papers from the “Self-Organization and Evolution of Social Behavior” conference held in October 2002 at Monte Verita, Switzerland. The ways that individual, rule-based activities result in overall patterns are considered in theory and experiment for market stabilities, language learning, mating choices and population dynamics.

Henrich, Joseph. Cultural Group Selection, Coevolutionary Processes and Large-scale Cooperation. Journal of Economic Behavior & Organization. 53/1, 2004. From an issue on Evolution and Altruism, the Emory University anthropologist clarifies how genetic and cultural transmission can theoretically explain an innate tendency to such a group “prosociality.”

Henrickson, L. and B. McKelvey. Foundations of “New” Social Science: Institutional Legitimacy from Philosophy, Complexity Science, Postmodernism, and Agent-Based Modeling. Proceedings of the National Academy of Sciences. 99/7288, 2002. A paper from the “Adaptive Agents, Intelligence, and Emergent Human Organization” colloquium of the National Academy of Sciences, October 2001. If dynamical theories are applied to human societies, they allow their features of many active agents, local interactions, and far-from-equilibrium self-organization to gain theoretical roots in a nonlinear nature. This situation is seen to align with the constructivist mode of postmodern philosophy as it tries to articulate a fluid yet consistent, knowable reality.

Hodgson, Geoffrey and Thorbjorn Knudsen. Darwin’s Conjecture: The Search for General Principles of Social and Economic Evolution. Chicago: University of Chicago Press, 2010. A University of Hertfordshire economist and University of South Denmark management specialist consider, extend and affirm, a century and a half on, Charles’ musings that the biological lineaments he found ought to similarly apply to human societies. In so doing, the authors today complement survival of the fittest with self-organizing dynamics, group selection, levels of replicators and interactors, and notably go on to expand the major transitions scale into cultural realms.

Hughes-Jones, N. Intergroup Aggression: Multi-individual Organisms and the Survival Instinct. Interdisciplinary Science Reviews. 25/2, 2000. The degree to which human groups, whether tribe, clan, or nation, are driven to exclude and exterminate foreigners can only be understood if they are seen as true social organisms which must fight to defend their collective self-identity.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]