(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

IV. Ecosmomics: Independent, UniVersal, Complex Network Systems and a Genetic Code-Script Source

Finlay, Bland, et al. Self-Similar Patterns of Nature. Proceedings of the Royal Society B. 273/1935, 2006. An extensive study from Britain and Denmark of insect diversities from meadow to bioregion reveals a constant nested series of size-frequency distributions across geometrical dimensions. So a grand new nature appears, it could be noted, no longer intractably tangled but comprehensible due to a universally repetitive archetype.

We have shown that the global diversity of insects is supported by a framework of self-similar patterns that emerge with some force, are relevant in Both Northern Southern Hemispheres, and across spatial scales from a few hectares to global. (1939) Finally, a further challenge will be to determine whether self-similar patterns lie hidden within other species-rich animal taxa. We suspect they do, and when they are revealed, they too will provide useful tools for characterizing and monitoring biodiversity across spatial scales. (1940)

Fitch, W. Tecumseh. Glossogeny and Phylogeny. Trends in Genetics. 24/8, 2008. Along with a rush of 2010 citations in A Cultural Code, one more realization that genomes and languages are an emergent manifestation of what might be seen as an independent, indeed parental, genome source.

Evolutionary theorists since Darwin have been interested in the parallels and interactions between biological and cultural evolution. Recent applications of empirical techniques originally developed to analyze molecular genetic data to linguistic data offer new insights into the historical evolution of language, revealing fascinating parallels between language change and biological evolution. This work offers considerable potential toward unified theories of genetic and cultural change. (373)

Flake, Gary. The Computational Beauty of Nature. Cambridge: MIT Press, 1998. A technical appreciation through nonlinear science of the recurrent harmony of the natural kingdoms. The website for the book with an extensive glossary is: www.mitpress.mit.edu/books/FLAOH/cbnhtml/home

….in order for the universe to move coherently from one state to the next, the universe must ‘remember’ previous states. (428) Looking at the organization of nature, we find that most interesting things are composed of smaller interesting things. Each level is nearly a universe in itself, since all of them use and support types of structural and functional self-similarity, multiplicity and parallelism, recursion and feedback, and self-reference. (429)

Fontana, Walter and Leo Buss. The Arrival of the Fittest. Bulletin of Mathematical Biology. 56/1, 1994. Its subtitle is “Toward a Theory of Biological Organization.” Since natural selection cannot explain how organisms occur in the first place, this oft-cited, important paper proposes that independent dynamic, autopoietic networks serve to organize a hierarchical scale of life.

Forrest, Stephanie and Melanie Mitchell. Adaptive Computation: The Multidisciplanary Legacy of John H. Holland. Communications of the ACM. August, 2016. University of New Mexico, and Portland State University complexity scientists write an insightful biography about this premier founder of the complexity revolution. Holland (1929-2015) was a pioneer professor of computer science at the University of Michigan, and is well known for his theory of genetic algorithms, which have gone on to many versions and applications. Holland also conceived the theory of complex adaptive systems (search JH) as a universal way to express such non-equilibrium evolutionary dynamics of statistical search and optimization.

Here, we consider this larger framework, sketching the recurring themes that were central to Holland’s theory of adaptive systems: discovery and dynamics in adaptive search; internal models and prediction; exploratory modeling; and universal properties of complex adaptive systems. (58) As the discussions about complex adaptive systems matured, a consensus developed about their basic properties. Such systems are composed of many components with nonlinear interactions; are characterized by complex emergent behavior; exhibit higher-order patterns; operate at multiple (and often nested) spatial and temporal scales, with some behavior conserved across all scales and other behaviors changing at different scales; and are adaptive, with behavioral rules continually adjusted through evolution and learning. (62)

Frame, Michael and Amelia Urry. Fractal Worlds: Grown, Built, and Imagined. New Haven: Yale University Press, 2016. A Yale mathematician and a journalist achieve a comprehensive, insightful survey of nature’s intrinsic self-similar topologies. To an integral degree not before covered, a nested self-similarity in kind is illuminated from galactic clusters, solar flares and planet formation to fitness landscapes, DNA globules, physiologies, broccoli florets, coastlines, clouds, onto literary narratives and human artifices. An Appendix lists 100 such instances, which are explained at length. Along with tutorials on how to calculate fractal dimensions, 50 reference pages make this a unique text. Michael Frame is most qualified for he was a junior colleague at Yale with Benoit Mandelbrot (1924-2010). Together they authored Fractals, Graphics, and Mathematics Education in 2002. MF with Nathan Cohn also wrote Benoit Mandelbrot: A Life in Many Dimensions, a 2014 biography. The volume is a grand survey from Mandelbrot’s 1970s and 1980s discovery to this witness of an invariant genesis from uniVerse to humanVerse.

Freeman, Walter. Foreword. Orsucci, Franco, ed. The Complex Matters of the Mind. Singapore: World Scientific, 1998. From the mid 1990s, a neuroscientist previews an imminent revolution in science.

Whereas the Newtonian dynamics that has dominated physics and biology for several centuries is rigid, deterministic, and precisely predictable, the new field of nonlinear dynamics opens a vast field of complexity to exploration and modeling. The key concept is self-organization. Given an adequate supply of energy and a sink for waste disposal, a collection of interacting elements such as molecules, neurons, organs or people can create new structure from within. (xiii)

Ganguly, Niloy, et al, eds. Dynamics On and Of Complex Networks: Applications to Biology, Computer Science, and the Social Sciences. Boston: Birkhauser, 2009. The proceedings of the Fourth European Conference on Complex Systems, Dresden, October 2007, with chapters by scientists from India and Germany. The meeting could well represent international collaborations entering upon a salutary genesis vista, out of the ruins of the 20th century. It is illuminating from the mid 2000s to see the project, as the quote notes, engage two distinct aspects – an initial distillation and discernment of independent, generic systems properties, and then their common, exemplary presence spreading to every area such as the book’s Biological, Social, and Informational Science sections.

The primary aim of this workshop was to systematically explore the statistical dynamics “on” and “of” complex networks that prevail across a large number of scientific disciplines. Dynamics on networks refers to the different types of processes, for instance, proliferation and diffusion, that take place on networks. The functionality/efficiency of these processes is strongly tied to the underlying topology as well as the dynamic behavior of the network. On the other hand, dynamics of networks mainly refers to the phenomena of self-organization, which in turn lead to the emergence of the complex structure of the network. Another important motivation of the workshop was to create a forum for researchers applying the theories of complex networks to various do mains as well as across several disciplines such as computer science, statistical physics, nonlinear dynamics, econometrics, biology, sociology and linguistics. (Preface)

Geard, Nicholas, et al. Developmental Motifs Reveal Complex Structure in Cell Lineages. Complexity. 16/4, 2010. As the quotes convey, University of Southampton, Houston, and Queensland biosystems researchers, including Seth Bullock and Janet Wiles, offer an explanation of how and why diverse dynamical phenomena across nature yet indeed display similar patterns and processes. The evidence thus grows stronger for an independent, universal source which becomes manifest in so many places and ways.

Many natural and technological systems are complex, with organizational structures that exhibit characteristic patterns but defy concise description. One effective approach to analyzing such systems is in terms of repeated topological motifs. Here we extend the motif concept to characterize the dynamic behavior of complex systems by introducing developmental motifs, which capture patterns of systems growth. (48)

As mentioned above, the evolutionary relationship among species and grammatical structure in linguistics are also commonly represented as trees. Furthermore, phylogenies and languages are also systems whose structure is likely to have been shaped both by intrinsic dynamics and external forces. It is intriguing to consider what types of regularity may be revealed by the application of developmental motifs to other complex systems. (55)

Gershenson, Carlos, et al. Self-Organization and Artificial Life. Artificial Life. 26/3, 2020. CG, National Autonomous University of Mexico, Vito Trianni, Italian National Research Council, Justin Werfel, Harvard, and Hiroki Sayama, SUNY Binghamton provide a tutorial upon this interface between complexity science and their advance via this computational frontier. An extensive list of 217 references bolsters the presentation.

Self-organization can be broadly defined as the ability of a system to display ordered spatiotemporal patterns solely due to interactions among its components. Placed at the frontiers between disciplines, artificial life has borrowed concepts and tools from the study of self-organization to interpret lifelike phenomena as well as constructivist approaches to artificial system design. In this review, we discuss aspects of self-organization and its usages within primary ALife domains of “soft” (mathematical computation), “hard” (physical robots), and “wet” (chemical/biological systems). (Abstract excerpt)

Gisiger, T. Scale Invariance in Biology: Coincidence or Footprint of a Universal Mechanism? Biological Reviews. 76/2, 2001. After an introduction to dynamical systems in their physical embodiment, their power law self-similarity properties are shown to pervade biological and neurological realms so as to affirm a ‘universality’ throughout nature.

In the spirit of complex systems, we should try not to look at these examples as physical processes or reactions between chemical reactants, but instead as systems made of many particles, or 'agents,’ which interact with each other via certain rules. (163) These findings might therefore illustrate how an ecosystem self-organizes into a critical state as the web of interactions between species and individuals develops. (185) Scale invariance is very common in nature, but it is only since the early 1970s that the mathematical tools necessary to define it more clearly were introduced. (204)

Goldberg, Elkhonon. The Executive Brain. New York: Oxford University Press, 2001. A Russian-American neuroscientist recounts a lifetime of clinical experience from which arises a novel synthesis of brain evolution. A universal complex system is seen to drive this process of encephalization from early isolated thalamic modules to the mammalian neocortex with its gradiental, neural net integration. The same sequence is then observed to occur on a global scale as nation-states break up into autonomous microregions.

The search for such universal principles shared by superficially different systems is at the heart of the new field of ‘complexity’ emerging at the cutting edge of science and philosophy. Today a striking parallel is increasingly apparent between the changing world order and the evolution of the brain. (219)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]