|
VI. Life’s Cerebral Cognizance Becomes More Complex, Smarter, Informed, Proactive, Self-AwareB. A Neural Encephalization from Minimal Stirrings to an Earthuman Cognizance Roth, Gerhard and Ursula Dicke. Evolution of the Brain and Intelligence. Trends in Cognitive Sciences. 9/5, 2005. An enhanced cerebral capacity has evolved independently in vertebrate classes of birds and mammals, and also in different orders of cetaceans and primates. By this view, a single ‘orthogenetic’ line leading to homo sapiens is ruled out, but a persistent advance in relative intelligence is evident. The outstanding intelligence of humans appears to result from a combination and enhancement of properties found in non-human primates, such as theory of mind, imitation and language, rather than from ‘unique’ properties. (250) Roumazeilles, Lea, et al. Longitudinal Connections and the Organization of the Temporal Cortex in Macaques, Great Apes, and Humans. PLOS Biology. July, 2020. By way of advanced brain scan techniques, sixteen researchers based at Oxford University, Wellcome Centre for Integrative Neuroimaging and Radboud University, Donders Institute for Brain, Cognition and Behavior, are now able to compare neural architectures across the range of our primate forebears. Our philoSophia vista then wonders what kind of Ecosmic to Earthosmic course arduously evolves and develops to an intelligent, collaborative species whom altogether can reconstruct how they came to be. What is the nature and purpose of this “accumulated knowledge repository” (geonome?) which could serve to begin a better genesis co-creation? The temporal association cortex is considered a primate specialization and is involved in complex behaviors such as language, a particular characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across anthropoid primates. We systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes exhibit an expanded and more complex occipital–temporal white matter system. (Abstract excerpt) Sadtler, Patrick, et al. Neural Constraints on Learning. Nature. 512/423, 2014. A team of neuroscientists with multiple postings at the University of Pittsburgh, Carnegie Mellon University and Stanford University achieve another quantification of how new experiences are better accommodated if they can be assimilated with prior memory. See also Hava Siegelmann 2012 and Richard Watson, et al 2014 for similar findings in neural networks and life’s evolution. Salas, Cosme, et al. Evolution of Forebrain and Spatial Cognition in Vertebrates: Conservation Across Diversity. Brain, Behavior and Evolution. 62/1, 2003. Although the vertebrate brain shows a range of diverse radiations, a common pattern of basic organization is consistently conserved across the long evolution of fish into monkeys. We analyze here recent data indication a close functional similarity between spatial cognition mechanisms in different groups of vertebrates, mammals, birds, reptiles and teleost fish, and we show in addition that they rely on homologous neural mechanisms. (72) Satterlie, Richard. The Search for Ancestral Nervous Systems: An Integrative and Comparative Approach. Journal of Experimental Biology. 218/4, 2015. A select article in an issue on the Evolution of the First Nervous Systems by a University of North Carolina marine biologist about the latest evidences of life’s insistence from its earliest phases on cerebral learning capabilities. See also Convergent Evolution of Neural Systems in Ctenophores by Leonid Moroz, and Evolution of Basal Deuterostome Nervous Systems by Linda Holland, Elements of a “Nervous System” in Sponges by Sally Leys, and Introductions by its editor Peter Anderson, the University of Florida marine bioscientist. Even the most basal multicellular nervous systems are capable of producing complex behavioral acts that involve the integration and combination of simple responses, and decision-making when presented with conflicting stimuli. This requires an understanding beyond that available from genomic investigations, and calls for a integrative and comparative approach, where the power of genomic/transcriptomic techniques is coupled with morphological, physiological and developmental experimentation to identify common and species-specific nervous system properties for the development and elaboration of phylogenomic reconstructions. With careful selection of genes and gene products, we can continue to make significant progress in our search for ancestral nervous system organizations. (Abstract) Savage-Rumbaugh, Sue, et al, eds. Apes, Language, and the Human Mind. New York: Oxford University Press, 1998. With regard to the sequential, complementary way brains evolved, its initial primate capacity is seen as a “wholistic intelligence” whence an entire scene is taken in all at once. Later hominids and human beings are characterized by a “hierarchical intelligence,” which is an analytical subset of the earlier global survey. Schmidt-Rhaesa, Andreas, et al, eds. Structure and Evolution of Invertebrate Nervous Systems. Oxford: Oxford University Press, 2016. This 750 page, 55 chapter tome by European and international neuroscientists is a comprehensive, consummate survey of this research field, which, it is said, was not possible until now. Many entries about classes such as Tardigrada, Brachiopoda, Cnidaria, Rotifera, Nemertea, and Scorpiones are interspersed with Perspectives on Evolution of Neural Cell Types (Detlev Arendt), The First Brain, Neural Systems Development, Evolution of Neurogenesis in Arthropods (Angelika Stollewerk), and The Origin of Vertebrate Neural Organization. As one may peruse this reconstruction by Anthropo Sapiens of the many creatures far and near from which we came, as the quotes broach, a constant theme emerges. From the earliest, originally complex, rudiments arose radiating homologies of forms and senses, a recurrent convergence leading onto vertebrate species. In regard, an evolutionary developmental gestation, lately reaching our global phase able to achieve this knowledge is once again clearly evident, just as Darwin’s day intimated. Inescapably, the stunning presence in basal metazoans of cellular modules that belong to diverse cell types in the complex bilaterians implies that these modules are distributed over relatively few, hence multifunctional cell types. This means that metazoan ancestors likewise possessed few complex cell types, including early neural cells. Thus, metazoan cell type diversification started from multifunctional cells. (19) The transition from a few cell types with multiple functions in early metazoans to many cell types with specialized functions in animals implies that, at least in many cases, cell type evolution involved a differential distribution of functions and modules among emergent sister cells. This process has been referred to as a “segregation of functions” or “division of labor.” (20) Singer, Wolf. The Evolution of Culture from a Neurobiological Perspective. Levinson, Stephen and Pierre Jaisson, eds. Evolution and Culture. Cambridge: MIT Press, 2005. Advances in bipedal gait, labor-sharing societies, agriculture, and language, are accompanied by a ramification of brain size and anatomy. An expanded cerebral cortex by way of iterative, self-similar processes achieves a series of “metarepresentations” through symbolic communication and a sense of what others may think and know. Smaers, Jeoroen, et al. The Evolution of Mammalian Brain Size. Science Advances. 7/18, 2021. Twenty two neuroresearchers from across the USA and onto Germany, the UK, Austria, Canada, Madagascar, South Africa and Australia provide a most comprehensive, quantified, graphic reconstruction of cerebral anatomies to date for this major animalia class. By view of its international occasion, one might consider the current advent of an emergent sapiensphere which is proceeding to learn how all manner of beings evolved and grew smarter on their way to this worldwise retrospect. Relative brain size has long been considered as a measure of cognitive capacities. Yet, these views about brain size rely on untested assumptions that brain-body allometry is a stable scaling relationship across species. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved their relative sizes by divergent paths. These findings prompt a reevaluation of the traditional paradigm and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size. (Abstract excerpt) Smith-Ferguson, Jules and Madeleine Beekman. Who Needs a Brain? Slime Moulds, Behavioural Ecology and Minimal Cognition. Adaptive Behavior. Online January, 2019. University of Sydney neurobiologists contribute to current realizations that an evolutionary continuum is evident from invertebrate rudiments all the way to complex animals. For example, familiar “cognitive” behaviors are found in insects (bees can count) and even for prokaryote bacterial colonies. As our Evolutionary Intelligence section conveys, this rising, cumulative acumen seems quite traces a central track. See also Van Duijn, Marc. Phylogenetic Origins of Biological Cognition: Convergent Patterns in the Early Evolution of Learning by Marc van Duijn in Interface Focus (7/3, 2017) for a similar perception. Although human decision making seems complex, there is evidence that many decisions are grounded in simple heuristics. Such heuristic models of decision making are widespread in nature. To understand how and why different forms of information processing evolve, it is insightful to study the minimal requirements for cognition. Here, we explore the minimally cognitive behaviour of the acellular slime mould, Physarum polycephalum, in order to discuss the ecological pressures that lead to the development of information processing mechanisms. By highlighting a few examples of common mechanisms, we conclude that all organisms contain the building blocks for more complex information processing. Returning the debate about cognition to the biological basics demystifies some of the confusion around the term ‘cognition’. (Abstract) Stern, Menachem and Arvind Murugan. Learning without Neurons in Physical Systems. Annual Review of Condensed Matter Physics.. 14/417, 2023. We record this chapter by University of Pennsylvania and University of Chicago physicists as an example of how even relative subsoil realms are yet being seen to possess stirrings of cognitive senses. The ability of learning methods to solve hard inverse problems invites an effort to development physical learning in which physical systems adopt unique capacities on their own without computational design. It was recently realized that large classes of physical domains can learn through local rules by adapting their parameters in response to observed examples of use. We review recent work in the emerging field of physical learning, describe theoretical and experimental advances from molecular self-assembly to flow networks and mechanical materials. (Excerpt) Stevens, Charles. An Evolutionary Scaling Law for the Primate Visual System and Its Basis in Cortical Function. Nature. 411/193, 2001. Allometric, scale-free laws likewise hold for neural development. The conservation of these scaling relations raises the possibility that a similar basis for the scaling laws exists for all cortical areas. In this view, each cortical area would be provided with a map of some sort - perhaps one with very abstract quantities - and the job of the cortex would be to extract some characteristic of the map at each point that would be represented as a location code by the neurons in each map ‘pixel.’….A 3/2 power relation would result. (195)
[Prev Pages] Previous | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 Next
|
||||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |