(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VI. Life’s Cerebral Cognizance Becomes More Complex, Smarter, Informed, Proactive, Self-Aware

B. A Neural Encephalization from Minimal Stirrings to an Earthuman Cognizance

Kishikawa, Kiisa. Evolutionary Convergence in Nervous Systems: Insights from Comparative Phylogenetic Studies. Brain, Behavior and Evolution. 59/5-6, 2002. A persistently convergent evolution in many anatomical and cerebral domains is now realized to be quite widespread.

Over the past 20 years, cladistic analyses have revolutionized our understanding of brain evolution by demonstrating that many structures, some of which had previously been assumed to be homologous, have evolved many times independently. These and other studies demonstrate that evolutionary convergence in brain anatomy and function is widespread……One reason that convergence is so common in the biological world may be that the evolutionary appearance of novel functions is associated with constraints, for example in the algorithms used for a given neural computation. Convergence in functional organization may thus reveal basic design features of neural circuits in species that possess unique evolutionary histories but use similar algorithms to solve basic computational problems. (240)

Kording, Konrad. Bayesian Statistics: Relevant for the Brain? Current Opinion in Neurobiology. 25/130, 2014. In a special issue on Theoretical and Computational Neuroscience, a Northwestern University biophysicist advocates this approach which is lately coming into use across the sciences for optimal choices from a population of options. A best or sufficient bet is achieved by according new experience and/or responses with prior learned memory. For example, Richard Watson, et al (search 2014) proposes life’s evolution as proceeding this way. See also Automatic Discovery of Cell Types and Microcircuitry from Neural Connectomics by Kording and Eric Jonas at arXiv:1407.4137. The whole issue of some 32 articles, e.g. by Adrienne Fairhall, Stanislav Dehaene, and Leslie Valiant, is a significant entry to an endeavor by worldwise humanity to reveal the creaturely cerebration that brought me and We to be. With “connectome” often cited, the papers seem as if they could equally apply to genomes. Might a better term be a “neurome” equivalent?

Bayesian statistics can be seen as a model of the way we understand things. Our sensors are noisy and ambiguous as several worlds could give rise to the same sensor readings. We therefore have uncertainty in our data and cannot be certain which model or hypothesis we should believe in. However, we can considerably reduce uncertainty about the world using previously acquired knowledge and by interpreting data across sensors and time. As new data comes in, we update our hypotheses. Bayesian statistics is the rigorous way of calculating the probability of a given hypothesis in the presence of such kinds of uncertainty. With Bayesian statistics, previously acquired knowledge is called prior, while newly acquired sensory information is called likelihood. (130)

Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a nonparametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists, including connectivity, cell body location and the spatial distribution of synapses, in a principled and probabilistically-coherent manner. (arXiv Abstract)

Kverkova, Kristina, et al. The Evolution of Brain Neuron Numbers in Amniotes. PNAS. 119/11, 2022. Charles University, Prague paleo-neuroscientists deftly reconstruct the evolution of brain neuron number across an entire range of Metazoa species and found that after fish and reptiles, birds and mammals have much larger quantities in cerebral areas meant for higher cognition. It is noted that several major changes in neuron brain scaling in the past 300 million years indeed appear to be oriented to an increasing degree of intelligence. The group effort has achieved the strongest evidence to date of how life’s emergent sensory stirrings can be known to have this central edification. The paper has vivid illustrations of relative creaturely advances in body and brain anatomies, which well evince a grand learning experience.

A reconstruction of the evolution of brain information-processing capacity is vital to understandings the rise of complex cognition. Comparative studies long used brain size as a proxy. However, to get a better sense of paths leading to high intelligence, power, we need to compare brains by large datasets of computational neurons. We find Amniote brain evolution to be tracked by four major shifts in neuron–brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals. The other two rises in neuron numbers happened in core land birds and anthropoid primates, known for their cognitive prowess. (Abstract excerpt)

Amniota, a group of limbed vertebrates that includes reptiles, birds, mammals and their extinct ancestors. The amniotes are the evolutionary branch (clade) of the tetrapods in which the embryo develops within a set of protective extra-embryonic membranes—the amnion, chorion, and allantois.

Lacalli, Thurston. An Evolutionary Perspective on Chordate Brain Organization and Function. Philosophical Transactions of the Royal Society B. December, 2021. In this Systems Neuroscience and Evolutionary Theory issue, a veteran University of Victoria, BC neurobiologist (see website) posts a definitive retrospect to date of how a group social sapience can now be consistently traced all the way back to its earliest invertebrate rudiments. But by a unique turn from that origin, the author traces an advent and advance of relative sentience and consciousness as it stirs and knows through vertebrate forms and scales. Contrary to random models, we want to record that a central axis, a vectorial progression, to our people selves in community does in fact exist. In regard, when warlords “think with tanks,” such collective findings of a long walk and talk course need gain wider appreciation. Isaac Newton found this oldest journal in the 1660s, has anything at last been learned since to save us?

The similarities between amphioxus and vertebrate brains, in their regional subdivision, cell types and circuitry, can provide a deep relativity over this evolutionary span. Mobility controls were already well developed in basal chordates. But amphioxus did not yet have complex sense organs. Vertebrate development thus involves their progressive improvement in two main aspects: anatomical and neurocircuitry innovations in the sense organs and the occasion of sentient consciousness. (Abstract excerpt)

Chordate possess synapomorphies, or primary characteristics, during their larval or adulthood stages which include a notochord, dorsal hollow nerve cord, endostyle or thyroid, pharyngeal slits, and a post-anal tail. Chordates are bilaterally symmetric, have a circulatory system, and metameric segmentation. Amphioxus consist of species of "fish-like" benthic filter feeding chordates. (Wikipedia)

Laughlin, Simon and Terrence Sejnowski. Communication in Neuronal Networks. Science. 301/1870, 2003. The article reports on a linear relation between cortical white and grey matter for 59 mammalian species expressed by a power law which spans five orders of magnitude from the pygmy shrew to the elephant.

Lefebvre, Louis and Daniel Sol. Brains, Lifestyles and Cognition: Are There General Trends? Brain, Behavior and Evolution. 72/2, 2008. McGill University neurobiologists contribute to the discovery of an amplifying encephalization and erudition being found across the Metazoan kingdoms. Upon reflection, might we consequent embrained, collaborative humans be able to finally perceive the grand learning process of a self-discovering genesis universe?

Comparative and experimental approaches to cognition in different animal taxa suggest some degree of convergent evolution. Similar cognitive trends associated with similar lifestyles (sociality, generalism, new habitats) are seen in taxa that are phylogenetically distant and possess remarkably different brains. Many cognitive measures show positive intercorrelations at the inter-individual and inter-taxon level, suggesting some degree of general intelligence. (135) From apes to birds, fish and beetles, a few common principles appear to have influenced the evolution of brains and cognition in widely divergent taxa. (135)

Lefebvre, Louis, et al. Large Brains and Lengthened Life History Periods in Odontocetes. Brain, Behavior and Evolution. 68/4, 2006. Whales and dolphins exhibit the same parallel between cerebral volume and length of life as do other phyla. Upon reflection, one might perceive an evolutionary propensity for life to manifestly grow in cognizance and yearly duration, so as to ramify into a more prominent cosmic presence.

Most of the studies on mammalian life history correlates of brain size have concentrated on primates. In general, the studies show that life span and time to sexual maturity are positively associated with relative brain size. Similar patterns have been found in other groups of mammals, as well as birds, suggesting a general association among longevity, development time and encephalization. (219)

Liebeskind, Benjamin, et al. Evolution of Animal Neural Systems. Annual Review of Ecology, Evolution, and Systematics. 48/377, 2017. UT Austin senior computational biologists Liebeskind, Hans Hofmann, Danny Hillis, and Harold Zakon provide a most sophisticated review to date of how early sensory cerebral capacities across the phyla came to form, sense, learn, and develop. Their detailed reconstructions, an incredible achievement by our collaborative humankinder phase, are depicted by cladogram, deep homology, molecular novelty, and systems drift models. An “urbilaterian” origin is seen to deploy into Nematode, Cnidarian, Ctenophore, Drosophila and Xenopus ancestries. Once again an overall appearance, one might muse, seems to be an embryonic gestation.

Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution. (Abstract)

Lopez-Larrea, Carlos, ed. Sensing in Nature. Dordrecht: Springer, 2012. A comprehensive collection across the creaturely scales and their relative cerebration as to how we all are aware, respond, interact, survive, and prevail. The abiding theme is a gradated consistency from the earliest rudiments to reflective humans. See for example Eusocial Evolution and Recognition Systems, Plant Communication, Identifying Self- and Nonself-Generated Signals, onto the Neurobiology of Sociability and Immune Systems Evolution. Concluding chapters The Neural Basis of Semantic and Episodic forms of Self-Knowledge by D’Argembean and Salmon, and Hallmarks of Consciousness by Ann Butler are reviewed separately.

Biological systems are an emerging discipline that may provide integrative tools by assembling the hierarchy of interactions among genes, proteins and molecular networks involved in sensory systems. The aim of this volume is to provide a picture, as complete as possible, of the current state of knowledge of sensory systems in nature. The presentation in this book lies at the intersection of evolutionary biology, cell and molecular biology, physiology and genetics. Sensing in Nature is written by a distinguished panel of specialists and is intended to be read by biologists, students, scientific investigators and the medical community. (Publisher)

One of the most important biological discoveries of the past two decades is that most animals share specific families of genes that regulate major aspects of body patterns. In several instances, shared aspects of development and regulatory gene expression reflect the evolution of pre-existing ancestral structures. Cell signalling pathways are constructed from a limited number of component types that rely upon a small number of discrete mechanisms of action. The discovery of this universal genetic toolkit for an animal’s development has had important impacts. Evolution appears to have converged on the same network motifs on different systems, suggesting that they were selected because of their functions.

Lotem, Arnon and Joseph Halpern. Coevolution of Learning and Data-Acquisition Mechanisms: A Model for Cognitive Evolution. Philosophical Transactions of the Royal Society. 367/2686, 2012. A Tel-Aviv University zoologist and a Cornell University computer scientist propose an interactive ratchet-like process as creatures find out what is going on around them and their cerebral development for the ability to do so. See also The Evolution of Continuous Learning of the Structure of the Environment by Oren Kolodny, Shimon Edelman, and Arnon Lotem in the Journal of the Royal Society Interface (Online January 2014).

A fundamental and frequently overlooked aspect of animal learning is its reliance on compatibility between the learning rules used and the attentional and motivational mechanisms directing them to process the relevant data (called here data-acquisition mechanisms). We propose that this coordinated action, which may first appear fragile and error prone, is in fact extremely powerful, and critical for understanding cognitive evolution. Using basic examples from imprinting and associative learning, we argue that by coevolving to handle the natural distribution of data in the animal's environment, learning and data-acquisition mechanisms are tuned jointly so as to facilitate effective learning using relatively little memory and computation. We then suggest that this coevolutionary process offers a feasible path for the incremental evolution of complex cognitive systems, because it can greatly simplify learning. This is illustrated by considering how animals and humans can use these simple mechanisms to learn complex patterns and represent them in the brain. We conclude with some predictions and suggested directions for experimental and theoretical work. (Abstract)

Lui, Jan, et al. Development and Evolution of the Human Neocortex. Cell. 146/1, 2011. As many citations here report, novel neuroimaging capabilities, often with 3D streaming video, not possible much earlier, are opening luminous portals on brain anatomy and cognition, not only for humans but across the animal kingdom. With coauthors David Hansen and Arnold Kriegstein, University of California, San Francisco, neuroscientists find our cerebral endowment to be much a “scaled-up primate brain.” Neural growth is then traced and compared via brain cross-sections to elephant, manatee, capybara, ferret, bushbaby, mouse, and brown bat. May we now witness, from our global cognitive vista, life’s long encephalization as if an emergent embryonic maturation of a singular earthly faculty?

Lyon, Pamela. Of What is “Minimal Cognition” the Half-Baked Version? Adaptive Behavior. Online September, 2019. A Flinders University, Adelaide natural philosopher (search) seeks to counter the popular use of this phrase for an early advent of neural faculties. She advises a better appreciation beyond marking any prior time when sensory abilities did not exist or were not present at all. Relative sentience does not and can not spring from insensate nothingness, it must be a natural, incarnate quality. See also Conditions for Minimal Intelligence Across Eukaryota by Paco Calvo and Frantisek Baluska in Frontiers in Psychology and Evolutionary Convergence and Biological Embodied Cognition by Fred Keijzer in Interface Focus (7/20160123, 2017).

“Minimal cognition” is used in certain sectors of the cognitive sciences to make a kind of ontological claim: that a function operating in organisms living today is not a fully fledged version of that function, but, rather, exhibits the minimal requirements for whatever it is, properly conceived. This article argues that “minimal cognition” and “proto-cognitive” were introduced at the turn of this century by researchers seeking to learn directly from evolved behavior, ecology and physiology. An alternative terminology is proposed, based on a phyletically neutral definition of cognition as a biological function; a candidate mechanism is explored; and a bacterial example presented. On this story, cognition is like respiration: ubiquitously present, from unicellular life to blue whales and every form of life in between, and for similar reasons: staying alive requires it. (Abstract excerpt)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]