(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

VIII. Pedia Sapiens: A New Genesis Future

C. An Earthropic Principle: Novel Evidence for a Special Planet

Burov, Alexey and Lev Burov. Genesis of a Pythagorean Universe. arXiv:1411.7304. We report this posting from a Fermi National Accelerator Laboratory physicist and a Scientific Humanities, San Francisco, imagineer because it offers a unique perspective on the breadth and depth of cosmic reality. After noting the fine-tuned Anthropic Principle fades into a multiverse chaosogenesis, it is proposed that nature’s most awesome aspect ought to be our very human ability to learn and describe everything from bosons to universes. This vista then grants phenomenal people an intentional, central role as Cosmic Observers.

Canales, Manuel, et al. One Strange Rock. National Geographic. March, 2017. As a companion article for a 10 part TV series with this title, senior editors MC and Matthew Chwastyk and science writer Eve Conant compile a list of thirteen reasons why this Earth, upon which a planetary sapience has evolved able to do this, appears to be the successful outcome of many especially fortuitous astronomic, geologic, and biotic conditions and event.

Earth is well equipped as a planet and ideally placed in our solar system and galaxy to support life as we know it. The product of some 4.6 billion years of cosmic construction, oru planet is flush with life thanks to a fortuitous set of conditions, from the optimal chemical makeup of our planetary core to our safe distance from the hidden black hole at the center of the Milky Way.

Thirteen Reasons: 1. Our planet recycles life-friendly carbon over time, 2. We have an ozone layer to block harmful rays, 3.We have a big moon to stabilize our axial wobble, 4. Earth’s varied surfaces support many life-forms, 5. Our magnetic field deflects solar tempests, 6. We’re at just the right distance from the sun, 7. We’re situated safely away from gas giants, 8.The sun is a stable, long-lasting star, 9. Wehave the right stuff to host a dynamic core, 10. We have Giant planets that protect us from afar, 11. Our sun offers protection from galactic debris, 12. Our galactic path steers us clear of hazards, and 13. Our location is far from stellar crowds.

Canup, Robin, et al. Origin of the Moon. arXiv:2103.02015. Eleven astro-researchers based in Colorado, Texas, California, Illinois, New York and the Czech Republic gather and discuss the latest global findings about how the especially suitable satellite that graces our night skies came to form so neatly where it best belongs. Its presence has been a vital part of early conditions which helped get life going on its way to our curious selves.

The Earth-Moon system is unusual in several respects. The Moon is roughly 1/4 the radius of the Earth - a larger satellite-to-planet size ratio than all known satellites other than Pluto's Charon. The Moon has a tiny core, perhaps with only ~1% of its mass, in contrast to Earth whose core contains nearly 30% of its mass. The Earth-Moon system has a high total angular momentum, implying a rapidly spinning Earth when the Moon formed. In addition, the early Moon was hot and at least partially molten with a deep magma ocean. Identification of a model for lunar origin that can satisfactorily explain all of these features has been the focus of decades of research. (Abstract excerpt)

Carlisle, Camille. Cosmic Collisions. Sky & Telescope. December, 2012. Into this 21st century what vistas have earthlings come to, what are we risen mortals altogether capable of. This article suggests that it may amazingly be possible to detect signs of other, intermeshing universes by finessing data findings from the CMB and WMAP satellites. Might we then imagine that valiant human beings have something to do with the success or failure of the entire cosmos, if by common vision, we could so witness and self-select?

Chopra, Aditya and Charles Lineweaver. The Case for a Gaian Bottleneck: The Biology of Habitability. International Journal of Astrobiology. 16/1, 2016. If one pays attention to current findings in the scientific literature, as this website tries to report, in the past few years the cosmic nexus of our Earthly abode has attained a special statue. Planetary systems with well spaced circular orbits, all in the same plane, a rare location of outer gas giants, a stable, long duration galaxy, and a large moon, are now known as quite rare. This paper by Australian Natural University astrophysicists now adds a temporal evolutionary constraint. While biochemical, microbial life appears wherever possible, an ability to reach complex, multicellular stages is seen to require an early formation of a conducive, self-regulating atmosphere. If this does not happen, simpler life forms are extinguished by hostile conditions, the candidate bioworld becomes barren. Even if the emergence of life is a common feature of wet rocky planets throughout the Universe, the Gaian bottleneck model suggests that inhabited Earth-like planets would be rare.

The prerequisites and ingredients for life seem to be abundantly available in the Universe. However, the Universe does not seem to be teeming with life. The most common explanation for this is a low probability for the emergence of life (an emergence bottleneck), notionally due to the intricacies of the molecular recipe. Here, we present an alternative Gaian bottleneck explanation: If life emerges on a planet, it only rarely evolves quickly enough to regulate greenhouse gases and albedo, thereby maintaining surface temperatures compatible with liquid water and habitability. Such a Gaian bottleneck suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surfaces of wet rocky planets in the Universe and (ii) rocky planets need to be inhabited to remain habitable. In the Gaian bottleneck model, the maintenance of planetary habitability is a property more associated with an unusually rapid evolution of biological regulation of surface volatiles than with the luminosity and distance to the host star. (Abstract)

Cirkovic, Milan. Earths: Rare in Time, not Space? Journal of the British Interplanetary Society. 57/1-2, 2004. In attempt to move beyond the Rare Earth hypothesis, the Belgrade astronomer enlists a temporal factor whereby the Milky Way galaxy may be at the verge of a Phase Transition from a sparsely populated mode to being filled with centers of intentional intelligence. The present galactic moment is a “window of opportunity” when sentient observers may engage in their own “self-selection.”

The latter hypothesis (PT) suggests that our presence on Earth now selects a particular (and rather special) epoch of the history of the Milky Way: namely the epoch in which global regulation enables the emergence of complex, intelligent life forms. (57) However, our temporal location is rather special, since we are evolved complex metazoans on the verge – in terms of astrophysical timescales – of having capacities to leave our home biosphere and embark on the venture of Galactic colonization. (57)

Cirkovic, Milan. The Great Silence: Science and Philosophy of Fermi’s Paradox. Oxford: Oxford University Press, 2018. The Astronomical Observatory of Belgrade and Future of Humanity Institute, Oxford University astrophysicist and author (search) provides a thorough study of possible answers to Enrico Fermi’s famous query: with an infinity of suns and assumed worlds, the cosmos ought to be filled with signs of their presence, but they are nowhere to be seen. Thus follows an eclectic list of solipsist, rare-earth, neo-catastrophic, logistic, and so on guesses – they are hiding, we are toxic, it’s a zoo, too many natural or viral dangers, stick with your home base, arrested development, technological annihilation and more. A theme then courses through – while a “Copernican principle” need be held to such that Earth is not in any central location, a closing phrase is Many are called, but few are chosen. Since Earth life has made it through an evolutionary “Gaian Window,” maybe we are special after all (I may be reading this in) so that efforts to achieve sustainability ought to proceed. See also Where is Everybody? by Stephen Webb (2015), /The Future of Humanity by Michio Kaku (2018) and On the Future by Martin Rees (2018) for other takes. So some seven decades later, as an Earthropic Principle conveys, me + We = US could well be the It from Bit as participatory cosmic cocreators.

The Great Silence explores the multifaceted problem named after the great Italian physicist Enrico Fermi and his legendary 1950 lunchtime question "Where is everybody?" In many respects, Fermi's paradox is the richest and the most challenging problem for the entire field of astrobiology and the Search for ExtraTerrestrial Intelligence (SETI) studies. The book shows how Fermi's paradox is intricately connected with many fields of learning, technology, arts, and even everyday life. It aims to establish the strongest possible version of the problem, to dispel many related confusions, obfuscations, and prejudices, as well as to offer a novel point of entry to the many solutions proposed in existing literature. Milan Cirković argues that any evolutionary worldview cannot avoid resolving the Great Silence problem in one guise or another. (Publisher)

Cirkovic, Milan and Branislav Vukotic. Astrobiological Landscape: A Platform for the Neo-Copernican Synthesis? International Journal of Astrobiology. Online October, 2012. As the Abstract explains, Belgrade astronomers draw upon many findings that imply an abiding lively cosmos which inherently seeds itself with complexifying biomolecules, habitable zones, and myriad fertile exoearths. In regard, it is proposed to extend biology’s evolutionary or fitness landscape models to celestial reaches, a notable advance toward imagining a procreative genesis cosmos.

We live in the epoch of explosive development of astrobiology, a novel interdisciplinary field dealing with the origin, evolution and the future of life. The relationship between cosmology and astrobiology is much deeper than it is usually assumed – besides a similarity in the historical model of development of these two disciplines, there is an increasing number of crossover problems and thematic areas which stem from considerations of Copernicanism and observation selection effects. Such a crossover area is both visualized and heuristically strengthened by introduction of the astrobiological landscape, describing complexity of life in the most general context. We argue that this abstract landscape-like structure in the space of astrobiological parameters is a concept capable of unifying different strands of thought and research, a working concept and not only a metaphor. By analogy with phase spaces of complex physical systems, we can understand the astrobiological landscape as a set of viable evolutionary histories of life in a particular region of space. It is a notion complementary to the classical concept of biological morphological space, underscoring the fact that modern astrobiology offers a prospect of both foundational support and vast extension of the domain of applicability of the Darwinian biological evolution. Such a perspective would strengthen foundations upon which various numerical models can be built; the lack of such quantitative models has often been cited as the chief weakness of the entire astrobiological enterprise. (Abstract)

Cukier, Wolf, et al. Habitable Zone Boundaries for Circumbinary Planets. arXiv:1911.02983. Seven astrophysicists based in New York, Colorado and California including Jacob Haqq-Misra can now advise that double star formations are ubiquitous across the galaxy, which along with multiple star groups, make up at least half of all stellar placements. While life-bearing worlds can appear in this setting, it is not conducive over the long term for an evolution of human-like, sentient beings.

Dehant, Veronique, et al. Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews. 215/42, 2019. Eighteen researchers from six European countries survey of how a wide range of variable internal and external geological and environmental conditions might affect a planet’s hospitality for evolutionary life. A tour is first taken of the Early Earth, Mars, Venus and outer worlds. How study of near and far exoplanets might progress is then scoped out. And as one reads along, it strikes how such a 21st century contribution as this need be attributed to an as yet unidentified worldwise, collective entity learning by her/his own self.

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its surface atmosphere, hydrosphere and biosphere might be able to sustain life. We address and debate questions issues such as: How do core and mantle affect the evolution and habitability of planets; Mantle overturn on the evolution of the interior and atmosphere; What is the role of the global carbon and water cycles; The influence of comet and asteroid impacts on the evolution of the planet; How does life interact with the evolution of the Earth’s geosphere and atmosphere; and How can knowledge of the solar system geophysics and habitability be applied to exoplanets. (Abstract excerpt, edit)

Eggl, Siegfried, et al. Habitable Zones in Binary Star Systems: A Zoology. Galaxies. 8/3, 2020. SE, University of Washington, Nikolaos Georgakarakos, NYU Abu Dhabi, and Elke Pilat-Lohinger, University of Vienna astrophysicists provide a latest technical survey of the relative habitability for binary and multiple stellar arrays, which are now seen to compose 40 - 45% of solar objects. Under favorable conditions, living systems will occur and form, but a long term stability vital to evolutionary developments is chancy and unlikely. See also Fear the Shadows of the Giants: On Secular Perturbations in Circumstellar Habitable Zones of Double Stars by Akos Bazso and Elke Pilat-Lohinger at arXiv:2008.11651 (second quote).

Several concepts have been brought forward to determine where terrestrial planets are likely to remain habitable in multi-stellar environments. Dynamically informed habitable zones include gravitational perturbations on planetary orbits, and full scale, self consistent simulations promise detailed insights into the evolution of select terrestrial worlds. Predictions on where to look for habitable worlds in such environments can differ between concepts. The aim of this article is to provide an overview of current approaches and estimates for the various types of habitable zones in binary star systems. (Eggl Abstract)

Results from earlier investigations of binary star systems assumed that well-separated binaries can be simply treated as single star systems. Our new results shed a different light, they demonstrate that secular perturbations do affect the HZ for a wide range of binary system orbital and physical parameters. Passing stars can affect planetary systems severely and can lead to direct or indirect ejections. They explain the apparent overabundance of eccentric (circumstellar) exoplanets in wide binary systems by the action of galactic tides that lead to an increase of the secondary star’s eccentricity, (2008.1165, 37).

Emspak, Jesse. New Insights into How the Solar System Formed. Astronomy. May, 2018. As the quote says, a science writer explains how the latest results increasingly imply that our home incubator is a uniquely conducive milieu. While myriad stellar systems are usually beset with chaos, here our large, gaseous Jupiter appears to have uniquely coursed over billions of years inward and out to form the relatively benign, orderly array that Earth presently abides in.

2018. As the quote says, a science writer explains how the latest results increasingly imply that our home incubator is a uniquely conducive milieu. While myriad stellar systems are usually beset with chaos, here our large, gaseous Jupiter appears to have uniquely coursed over billions of years inward and out to form the relatively benign, orderly array that Earth presently abides in.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next