![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator LifescapeI. Our EarthMost Distinction: A Rare Planetary Confluence of Favorable Conditions for Life in Person Milojevic, I. and S. Inayatullah. Futures Dreaming Outside and on the Margins of the Western World. Futures. 35/5, 2003. An argument that the vast genre of science fiction is largely written by white males who are preoccupied with war between binary opposites. Non-western, indigenous writers, especially women, are noted to be in search of alternative, less-combatant, holistically peaceful and creative visions. Mitrašinović, Ana, et al. Revisiting the bimodality of galactic habitability in IllustrisTNG. arXiv:2505.11048. Astronomical Observatory, Belgrade, Serbia searchers including Branislav Vukotić, and Milan Ćirković describe the latest abilities by which a wide array of galaxy neighborhoods could be quantified as hospitable to animate, evolutionary systems. The potential of galaxy-scale evolution and cosmological processes to host habitable planets is central to astrobiology. Using IllustrisTNG (a series of cosmological magneto-hydrodynamical simulations to illuminate the physical processes that drive galaxy formation) we revisit the mass-metallicity relation for small, metal-rich, star-forming galaxies as an indicator of enhanced galactic habitability. This research underscores the need for a holistic approach to studying habitability that moves beyond planetary and stellar-focused frameworks to incorporate the broader galactic environment. (Excerpt) Moore, Keavin, et al.. Water Evolution & Inventories of Super-Earths Orbiting Late M-Dwarfs. arXiv:2406.19923. As astronomic techniques become ever more sophisticated, Earth & Planetary Sciences, McGill University exoplanet researchers including Nicolas Cowen can come up with one more feature that will seriously affect long-term habitability. As the quote says, a finely-nuanced zone is found between all wet or bone dry conditions. Super-Earths orbiting M-dwarf stars may be the most common habitable planets in the Universe. However, their habitability is threatened by intense irradiation from their host stars, which drives water to escape to space. We present a box model of water cycling and evaporation for terrestrial planets of mass 1--8 M⊕ orbiting in the habitable zone of a late M-dwarf. Planets with more water become flooded, while those with less have desiccated surfaces. A super-Earth at the inner edge of a habitable zone tends to end up as either a waterworld or dry desert; only a narrow range of initial water inventory yields an Earth-like land-sea-air abide. (Abstract) Morbidelli, Alessandro and Sean Raymond. Challenges in Planet Formation. arXiv:1610.07202.. Universite de Nice Sophia-Antipoli, and CNRS, Laboratoire d'Astrophysique de Bordeau astrophysicists provide a latest update about how object worlds might have formed. As we report this active literature, an auspicious realization is that our own solar system is a rarest case (one in a thousand herein) with a relatively benign, long lived conducive order. A philosophical reflection ought to note how incredible it is that a global sapience can look back and reconstruct how this special planet and people came to be. Over the past two decades, large strides have been made in the field of planet formation. Yet fundamental questions remain. Here we review our state of understanding of five fundamental bottlenecks in planet formation. These are: 1) the structure and evolution of protoplanetary disks; 2) the growth of the first planetesimals; 3) orbital migration driven by interactions between proto-planets and gaseous disk; 4) the origin of the Solar System's orbital architecture; and 5) the relationship between observed super-Earths and our own terrestrial planets. (Abstract)
Morbidelli, Alessandro, et al.
Topical Collection on the Delivery of Water to Proto-Planets, Planets and Satellites.
Space Science Reviews.
214/7,
2018.
Eleven editors including Sean Raymond and Helmut Lammer introduce a special issue with this title about the occurrence, locales, and quantities of life’s ultimate biochemical through galactic, solar and planetary ages. Click on the issue citation for papers such as The Importance of Water for Life by Frances Westall and Andre Brack, The Delivery of Water during Terrestrial Planet Formation by David O.Brien, et al, Water in the Earth’s Interior by Anne Peslier, et al, and Water in Extrasolar Planets and Implications for Habitability by Lena Noack, et al. Mullan, Brendan and Jacob, Haqq-Misra. Population Growth, Energy Use, and the Implications for the Search for Extraterrestrial Intelligence. Futures. 106/4, 2019. In a special Detectability of Future Earth issue edited by J H-M, Blue Marble Space Institute of Science scholars reconsider a classic 1975 prediction (see Abstract) about the global fate and cosmic future of human sapiens. A half-century later, a terminal moment has indeed been reached which will drastically affect everything as we know it. A litany of familiar calamities from climate gases, resources, epidemics, AI impacts, and so on are tabulated, for which we are in denial, let alone do anything about. The paper closes with a dour view that an inability to stabilize and sustain one’s planetary civilization may answer Fermi’s question Where Are They? about the absence of ETs. They are no longer in existence because they could not save themselves. In a 1975 paper Population Explosion and Interstellar Expansion, (J. British Interplanetary Society, 28/691, hereafter VH75) Sebastian Von Hoerner examined the effects of human population growth and agricultural, environmental, and other consequences from observed growth trends. Using straightforward calculations, VH75 predicted the “doomsday” years of 2020-2050 for these scenarios when we as a species should run out of space or food, or induce catastrophic anthropogenic climate change through thermodynamically direct heating of the planet. Now that over four decades have passed, in this paper we update VH75. We perform similar calculations as that work, with improved data and trends in population growth, food production, energy use, and climate change. Murchie, Guy. The Seven Mysteries of Life. Boston: Houghton Mifflin, 1978. We restate here Guy Murchie’s thoughtful perception of bioplanet Earth as an embryonic superorganism. Sixth is the germination of worlds, a critical event that seems to happen once to every celestial organism and, after her billions of years of slow evolution, is occurring right now to Earth, as evidenced by many fundamental changes during what we call modern times - things that, as far as we know, never happened before and can never happen again on our planet. (7) Naganuma, Takeshi. An Astrobiological View on Sustainable Life. Sustainability. 1/4, 2009. A Hiroshima University, Graduate School of Biosphere Science, environmentalist, who could not be in a more appropriate place, imaginatively views matter, evolution and its human frontier as a vectorial vortex of thermodynamic energies. In regard, it is asked whether such knowledge from its collective humankind scale can come to a common fore to save and sustain us. In the Japanese language, the Sun is hi, and heat (fire) is also hi (originally ho or fo); water is mi or mizu; and, life is i-no-chi meaning energy of breath. The coincidence of two hi has impressed me, and I might say that split of mi by hi nourishes chi, at least, on the Earth. Both hi, that is the Sun’s radiation and the Earth’s interior heat, contribute to life. The degrees of contributions vary according to major modes of autotrophy, i.e., photosynthesis or chemolithoautotrophy. Examples of chemolithoautotrophic communities that depend primarily on geothermal hi are found in deep-sea hydrothermal vents and deep subsurface, respectively [4,5]. The idea that non-solar splitting of water nourishes life thus derives from the studies of deep-sea and deep subsurface biospheres, and is extended to possible extra-terrestrial biospheres. The concept of planetary biospheres should accommodate a more universal notion of life than traditional ones. The “non-solar splitting of water” idea is applicable to possible astrobiological biospheres. (835-836) Nojiri, Caitlyn, et al. Life in the Bubble: How a Nearby Supernova Left Ephemeral Effects on the Cosmic-Ray Spectrum and Imprints on Life. Astrophysical Journal Letters. 979/1, 2025. UC Santa Cruz and Stanford University astrophysicists add still another, galactic scale, radiative influence upon Earth’s developmental course of living systems due to adjacent, mobile supernovas which then might affect rudimentary cells and maybe cloudy mantles which reflect sunlight. See also Cosmic ray ionisation must be considered in early origin-of-life scenarios by S. Raeside, et al at arXiv:2504.02596. The Earth sits inside a 300 pc-wide void due to supernova explosions tens of millions of years ago and creating a bubble-like structure. In this Letter, we show that the supernova source responsible for synthesizing 60Fe peak deposits can explain the cosmic-ray spectrum between 100 TeV and 100 PeV. We estimate the temporal variation of cosmic radiation levels and their implications in the development of early life on Earth by plausibly influencing the mutation rate and the evolution of complex organisms. (Excerpts) O'Callaghan, Jonathan. A Solution to the Faint-Sun Paradox Reveals a Narrow Window for Life. Quanta Magazine. January 27, 2022. A science writer describes a latest quandary which seems to affect the relative habitability of our Earth, and exoworlds. A fine temperature confluence between a steady solar source and crustal living systems need exist and be sustained for any evolutionary course to succeed. See also Chance Played a Role in Determining Whether Earth Stayed Habitable by Toby Tyrrell in Communications Earth & Environment (1/61, 2020). We know that life under our faint young sun was possible, and now we might know why. What we are starting to see is just how lucky we may have been in avoiding becoming a permanent snowball Earth or even a steam Earth. Somehow, conditions were just right on our planet, keeping us in this narrow window between being frozen solid and evaporating to oblivion, and allowing us to survive — despite a few near misses. “There’s a huge discussion about the requirements for habitability,” said Georg Feulner. “Even on Earth, things could have gone wrong easily.” (13) Olse,, Stephanie, et al. The Effect of Ocean Salinity on Climate and its Implications for Earth’s Habitability. arXiv:2205.06785. As if we didn’t need any more fine-tuned conditions, Purdue University, University of Chicago, Weizmann Institute of Sciences and University of Victoria researchers including Dorion Abbot note that variable salt water levels could have aid or inhibit life’s planetary occasion and course. The influence of atmospheric composition on the climates of present-day and early Earth has been studied extensively, but the role of ocean composition has received less attention. We use the ROCKE-3D ocean-atmosphere general circulation model to investigate the response of Earth's present-day and Archean climate system to low vs. high ocean salinity. We find that saltier oceans yield warmer climates due to changes in ocean dynamics. In combination with higher levels of greenhouse gases such as CO2 and CH4, a saltier ocean may allow for a warm Archean Earth with only seasonal ice at the poles despite receiving 20% less energy from the Sun. (Abstract) Olson, Stephanie, et al. Oceanographic Constraints on Exoplanet Life. arXiv:1909.02928. With our favorable tectonic balance of land and sea as a reference, University of Chicago geophysicists including Dorian Abbot consider variable exoworld oceanic conditions with regard to the presence of living systems. This liquid, amniotic surface hydrosphere is also seen as a major factor in their relative biological detectability. See also Scaling Relations for Terrestrial Exoplanet Atmospheres from Baroclinic Criticality by this extended group at 1908.02661 for more vital properties. Liquid water oceans are crucial to our search for life on exoplanets because water is essential for life as we know it. However, oceans are dynamic habitats and some may be better hosts for life than others. In Earth's oceanic circulation conveys nutrients such as phospourous which affects the distribution and productivity of life. Of importance is upwelling due to wind-driven divergence in surface layers, which returns nutrients that tend to accumulate at depth. We address these aspects by using ROCKE-3D, a fully coupled ocean-atmosphere GCM, to investigate ocean dynamics on a diversity of habitable planets. Efficient nutrient recycling favors greater biological activity for better biosignature detection. Our results demonstrate the importance of oceanographic phenomena for exoplanet life detection and the emerging field of exo-oceanography. (Abstract excerpt)
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |