(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

VIII. Pedia Sapiens: A New Genesis Future

C. An Earthropic Principle: Novel Evidence for a Special Planet

Raymond, Sean. Sculpting Our Planetary System. American Scientist. September-October, 2018. In an issue on the many ways that Big Data/AI methods are bringing new capabilities to astronomical studies, a Laboratoire d’ Axtrophysique de Bordeaux researcher describes a novel, quite chaotic picture of how orbital worlds and solar systems form and evolve. Our familiar, orderly array, which was long taken as a norm, now seems a rare benign state as we learn about a usual crush of super-Earths, gas giants and rocky worlds in wildly shifting transits. See also by Formation of Terrestrial Planets by Raymond and Andre Izidoro at arXiv:1803.08830 and The Excitation of a Primordial Cold Asteroid Belt as an Outcome of the Planetary Instability by their group (1808.00609). The issue contains many entries from computations and astrochemistry to gravity waves and exoplanets.

The discovery of thousands of planets orbiting other stars has given us three surprising insights about our Solar System. First, we are weird: Our Solar System is a 1-in-2,000 rarity. Second, planet formation is a dynamic process, characterized by large-scale orbital drift as well as violent collisions and the ejection of young planets into interstellar space. Lastly, the second point may explain the first one—that is, how our Solar System formed is likely the root cause of our weirdness. (280)

Raymond, Sean, et al. Solar System Formation in the Context of Extra-Solar Planets. arXiv:1812.01033. Senior astrophysicists SR, University of Bordeaux, Andre Izidoro, Sao Paulo State University and Alessandro Morbidelli, University of Nice (search each) post a strongest analysis to date that our home Earth-Sun spatial and temporal array seems to be a rarest long term orderly, benign, conducive milieu for life to evolve and develop to a personsphere intelligence able to reach this auspicious conclusion. At the cusp of 2020, here is an incredible finding in our midst with implications for the fate and future not only of a geonate EarthKinder, but on to a self-chosen Ecosmos.

Exoplanet surveys have confirmed one of humanity's worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? We argue that most Earth-sized habitable zone exoplanets are likely to form much faster than Earth, with most of their growth complete within the disk lifetime. Their water contents should span a wide range, from dry rock-iron planets to water-rich worlds with tens of percent water. Jupiter-like planets on exterior orbits may play a central role in the formation of planets with small but non-zero, Earth-like water contents.

We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiter's core must have formed fast enough to quench the growth of Earth's building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiter's wide orbit. The giant planets' instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our solar system is thus the outcome of multiple unusual, but not unheard of, events. (Abstract)

The discovery of extra-solar planets demonstrated that the current Solar System-inspired paradigm of planet formation was on the wrong track. Most extra-solar systems bear little resemblance to our well-ordered Solar System. While the Solar System is radially segregated, with small inner rocky worlds and more distant giant planets, few known exo-systems follow the same blueprint. Models designed with the goal of reproducing the Solar System failed spectacularly to understand why other planetary systems looked different than our own. (1)

Raymond, Sean, et al. Solar System Formation in the Context of Extrasolar Planets. Meadows, Victoria, et al, eds. Planetary Astrobiology. Tempe: University of Arizona Press, 2020. SR, University of Bordeaux, with coauthors Andre Isidora, Sao Paulo State University and Alessandro Morbidelli, University of Nice astrophysicists (search SR, AM) are leading expositors of the arduous, stochastic formation of stellar objects and their myriad rocky, gaseous, oceanic, icy, arid orbital worlds. Two decades into the 21st century, stars and planets have been found across every possible size, shape and kind as they traverse solar systems and fill diverse galaxies. In regard, sun and bioworld are coming to appear as unitary incubators for evolutionary habitation. But another august finding has grown in evidential veracity, whence our home system and planet Earth is a rarest optimum confluence by way of passing through many critical check-points, as this section reports.

Exoplanet surveys have confirmed one of humanity’s worst fears: We are weird. If our solar system were observed with present-day Earth technology — to put our system and exoplanets on the same footing — Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the solar system is unusual at the ~1% level among Sun-like stars (or ~0.1% among all main-sequence stars). But why are we different? This review focuses on global models of planetary system formation. Successful formation models for both the solar system and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in “super-Earths” or “sub-Neptunes” cannot have formed in situ, but instead require substantial radial inward motion of solids either as drifting millimeter- to centimeter-sized pebbles or migrating Earth-mass or larger planetary embryos. (Abstract excerpt)

Rees, Martin. Is There Life Beyond Earth? New Scientist. July 12, 2003. More considerations by the Cambridge University astronomer about the future options and august purpose for an integral earthkind in the universe.

More time lies ahead than has elapsed in the entire course of biological evolution. In those aeons, Earth could be the “seed” from which post-human life spreads through the galaxy. The fate of humanity could then have an importance that is truly cosmic: what happens here might conceivably make the difference between a near eternity filled with ever more complex and subtle forms of life and one filled with nothing but base matter. (27)

Rees, Martin. Living in a Multiverse. Ellis, George F. R., ed. The Far-Future Universe: Eschatology from a Cosmic Perspective. Philadelphia: Templeton Foundation Press, 2002. In his many universe scenario, only those finely tuned for life can contain intelligent planetary beings who are able to learn, contemplate and creatively carry forth this genesis. (Noted again in The Greening of the Galaxy)

Our Earth may have cosmic importance, as the one place form which life could spread through the universe. This realization raises the stakes from the earth to the entire cosmos. This new century, on this planet may be a defining moment for the cosmos. In the entire domain that cosmologists explore – ten billion years of time, ten billion light-years of space – the most crucial space-time location of all could be here and now. (84)

Reinhold, Timo, et al. The Sun is Less Active that Other Solar-like Stars. Science. 368/516, 2020. A seven person team with postings in Germany, Korea, and Australia find that our starry sun to have a relatively benign magnetic field compared to a majority of similar solar types. Since higher magnetic activity may be averse to habitability, here may still be another feature that favors our home Earth.

The magnetic activity of the Sun and other stars causes their brightness to vary. Here, we investigate how typical the Sun’s variability is compared with other solar-like stars. By combining 4 years of photometric observations from the Kepler space telescope with astrometric data from the Gaia spacecraft, we were able to measure photometric variabilities of 369 solar-like stars. Most of those with well-determined rotation periods showed higher variability than the Sun and are considerably more active. These stars appear nearly identical to the Sun except for their higher variability. (Abstract)

Sagan, Dorion. Biospheres. New York: McGraw-Hill, 1990. Prescient speculations from a Vladimir Vernadsky and Gaian perspective on how earth seems primed for a biological metamorphosis which spawns self-contained, autopoietic colonies. A key tenet is a fractal creation which recovers the ancient microcosm/macrocosm correspondence in a evolutionary universe.

Looking forward, it is possible to imagine a scenario in which the cosmos becomes animated in a way our intellectual forerunners and midnight star-gazers may never have imagined: if life continues to unfold “fractally” in the direction set down here - with individuality reestablishing itself at ever greater levels - biospheres will till the virgin soil of space itself… (184)

Sandberg, Anders, et al. Dissolving the Fermi Paradox. arXiv:1806.02404. Oxford University, Future of Humanity Institute scientist forecasters AS, Eric Drexler and Toby Ord contend that long after Frank Drake’s famous 1961 method to calculate anticipated cosmic civilizations, many new findings from genes to galaxies beg a whole scale revision. As the quotes say, and current works reach from other angles, even though the universe is filled with planetary objects, the answer to why no evidence has been found may well be that we Earthlings are the only sapiensphere species to have evolved this far.

The Fermi paradox is the conflict between a high probability of intelligent life elsewhere in the universe and the apparently absence we in fact observe. The expectation that the universe should be teeming with intelligent life is based on views that even if the probability of intelligent life developing at a given site is small, the sheer multitude of possible sites should yield many observable civilizations. We show that this conflict arises from the use of Drake-like equations, which implicitly assume certainty from highly uncertain parameters. We examine these parameters, incorporating models of chemical and genetic transitions on paths to the origin of life, and identify uncertainties that span multiple orders of magnitude. When the model is recast to represent realistic distributions of uncertainty, we find a substantial probability of there being no other intelligent life in our observable universe, and thus little surprise when we fail to detect any signs of it. (Abstract edits and excerpts)

Our main result is to show that proper treatment of scientific uncertainties dissolves the Fermi paradox by showing that it is not at all unlikely for us to be alone in the Milky Way, or in the observable universe. Our second result is to show that, taking account of observational bounds on the prevalence of other civilizations, our updated probabilities suggest that there is a substantial probability that we are alone. Our third result is that pessimism for the survival of humanity based on the Fermi paradox is unfounded. (2)

Santos, Nuno, et al. Constraining Planet Structure and Composition from Stellar Chemistry. arXiv:1711.00777. An 11 member team from European observatories contribute to a growing sense that whole solar systems act altogether in a concerted way. The elemental makeup of the resident star is found to effect and determine what kind of orbital planets might be present. By this measure, different stellar populations can be evaluated for their relative propensity toward or away from a conducive habitability. See also Characterization of Exoplanet-Host Stars by this group at 1711.01112.

The chemical composition of stars that have orbiting planets provides important clues about the frequency, architecture, and composition of exoplanet systems. We compiled abundances for Fe, O, C, Mg, and Si in a large sample of solar neighbourhood stars that belong to different galactic populations. Assuming that overall the chemical composition of the planet building blocks will be reflected in the composition of the formed planets, we show that according to our model, discs around stars from different galactic populations, as well as around stars from different regions in the Galaxy, are expected to form rocky planets with significantly different iron-to-silicate mass fractions. Furthermore, the results may have impact on our understanding of the frequency of planets in the Galaxy, as well as on the existence of conditions for habitability. (Abstract)

Scharf, Caleb and Leroy Cronin. Quantifying the Origins of Life on a Planetary Scale. arXiv:1511.02549. The Columbia University astrobiologist and University of Glasgow biochemist scope out an advanced 2010s theoretical update of the 1960s Drake equation for better estimates of the likelihood of habitable abodes for organisms and peoples. See also A Probabilistic Framework for Quantifying Biological Complexity by Cronin, Stuart Marshall, and Alastair Murray at arXiv:1705.03460.

In this paper, we describe an equation to estimate the frequency of planetary “origin of life”-type events that is similar in intent to the Drake Equation but with some key advantages—specifically, our formulation makes an explicit connection between “global” rates for life arising and granular information about a planet. Our approach indicates scenarios where a shared chemical search space with more complex building blocks could be the critical difference between cosmic environments where life is potentially more or less abundant but, more importantly, points to constraints on the search. The possibility of chemical search-space amplification could be a major variance factor in planetary abiogenesis probabilities. (Significance)

Schwieterman, Edward, et al. A Limited Habitable Zone for Complex Life. arXiv:1902.04720. UC Riverside and NASA Astrobiology Institute scientists quantify another significant variable with regard to biospheric and atmospheric concentrations of carbon dioxide and carbon monoxide. While aerobic life from microbes to mammals requires a viable, stable CO2 range over time, CO levels are highly toxic for all organisms. Since numerous K and M-type dwarf stars are prone to CO, they are less habitable. Our G-type sun is a better place to be, if CO2 can be sustainably kept in a safe, conducive range.

The habitable zone (HZ) is defined as the range of distances from a host star within which liquid water may exist at a planet's surface. Substantially more CO2 than present in Earth's modern atmosphere is required to maintain clement temperatures. However, most complex aerobic life on Earth is precluded by CO2 levels of just a fraction of a bar. At the same time, most of the HZ volume resides in proximity to K and M dwarfs, which are more numerous than Sun-like G dwarfs but have greater abundances of atmospheric CO, a toxic gas for organisms. Here we show that the HZ for higher fauna is significantly limited relative to that for microbial life. These results cast new light on the likely distribution of complex life in the universe and the search for biosignatures and technosignatures. (Abstract excerpts)

Secco, Luigi, et al. Habitability of Local, Galactic and Cosmological Scales. arXiv:1912:01569. University of Padova astroscientists consider these near and far domains by way of the latest exoplanet and exosolar findings and again reach an auspicious conclusion. An “Earth peculiarity” appears due to features such as an optimum orbit around the sun, benign solar system, magnetic field strength, good nitrogen to oxygen ratio, ocean to land plate tectonics, an ideally placed large moon, obliquity tilt, and more. Akin to Planetary Astrobiology by Victoria Meadows, et al (2019, 2020 herein), as the second quotes alludes out of a concatenation of some 1020 candidate worlds, our emergent person/sapiensphere progeny could very well be its first, best, or last universal opportunity to observe, read, affirm self-select and begin a new creation.

The aim of this paper is to underline conditions necessary for the emergence and development of life. They are placed at a local planetary scale, a Galactic scale and within cosmic evolution. We will consider the circumstellar habitable zone (CHZ), a Galactic Habitable Zone (GHZ), and also a set of strong cosmological constraints to allow Anthropic life. Some requirements are specific to a single scale and their physical phenomena, while others are due to cumulative effects across scales. A surmise is that all the habitability conditions here so detailed must at least be met. Thus, some sixty years later a human-like presence may appear as "a monstrous sequence of accidents" as (Fred) Hoyle (1959) thought, or as a providential collaboration which can imply how finely tuned is the architecture within which precious Life is embedded. (Abstract edits)

Starting from the local scale, life leads to connect us with the largest scale, that of Universe. From this analysis a possible scenario arises in which links among the different scales are advanced. Even if possibly partial, a large set of minimum conditions has been identified which must be met for allowing life. The consequence of these conditions is that if we look at life from the probability point of view and then regard it as a complex phenomenon composed, by compatible and independent events, the probability to get it tends drastically to zero. But here we are! (24)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next