(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 16 through 30 of 94 found.


An Organic, Conducive, Habitable MultiUniVerse

Animate Cosmos > Quantum Cosmology > exouniverse

Boyle, Latham, et al. CPT-Symmetric Universe. Physical Review Letters. 1/251301, 2018. Perimeter Institute theoretical physicists LB, Kieran Finn, and director Neil Turok can now proceed to contemplate and quantify entire cosmoses with regard to variations if certain nuclear or energetic parameters were different. See also Quintessential Isocurvature in Separate Universe at arXiv:1409.6294 for another take. Within this website view, how fantastic is it that human beings altogether are able to learn about such vistas and imaginations. There must be some auspicious reason and purpose that we can do this.

We propose that the state of the universe does not spontaneously violate CPT (see below). Instead, the universe after the big bang is the CPT image of the universe before it, both classically and quantum mechanically. The pre- and post-bang epochs comprise a universe/anti-universe pair, emerging from nothing directly into a hot, radiation-dominated era. CPT symmetry selects a unique QFT vacuum state on such a spacetime, providing a new interpretation of the cosmological baryon asymmetry, as well as a remarkably economical explanation for the cosmological dark matter. Several other testable predictions follow: (i) the three light neutrinos are Majorana and allow neutrinoless double β decay; (ii) the lightest neutrino is massless; and (iii) there are no primordial long-wavelength gravitational waves. (Abstract excerpt)

Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry.

Animate Cosmos > Quantum Cosmology > exouniverse

Jamieson, Drew and Marilena LoVerde. Quintessential Isocurvature in a Separate Universe. arXiv:1812.08765. SUNY Stony Brook, Cosmology Group astrophysicists consider various theoretical models with regard to the nature of an entire cosmos. As noted above in Boyle, et al, this ability must imply something significant and purposeful about our planetary sapience. For an example of an earlier usage of this title concept, see Separate Universe Simulations by Christian Wagner, et al at arXiv:1409.6294,

In a universe with quintessence isocurvature, or perturbations in dark energy that are independent from the usual curvature perturbations, structure formation is changed qualitatively. The existence of two independent fields, curvature and isocurvature, causes the growth rate of matter perturbations to depend on their initial conditions. We perform the first separate universe simulations for this cosmology. We demonstrate that the power spectrum response and the halo bias depend on scale and initial conditions and that the presence of the isocurvature mode changes the mapping from these quantities to the halo auto- and cross-power spectra, and the squeezed-limit bispectrum. This allows our results to be used to predict the halo power spectrum and stochasticity with arbitrary large-scale curvature and isocurvature power spectra. (Abstract excerpt)

Animate Cosmos > Organic

Lambert, Jean-Francois and Maguy Jaber. Minerals and Origins of Life. Life. Online, 2018. Sorbonne Universite and Institut Universitaire de France materials scientists explain and post this special open issue about realizations that nature’s cosmic materiality seems to be an inherently suitable substrate for the occasion and rise of living systems. See, e.g., How do Nucleotides Adsorb onto Clays? and especially The Paleomineralogy of the Hadean Eon (Morrison, Runyon and R. Hazen herein).

When life arose on our planet, a complex mineral world was already present and certainly interacted with the first biomolecules. How it channeled chemical evolution has been the subject of much speculation; specific roles for minerals have been invoked for the emergence of the three main distinguishing features of life: Information storage, metabolism, and compartmentalization. Mineral surfaces may have aided selectivity in adsorption and/or polymerization, thus forming a subset in the space of possible proteins and nucleic acids. A lot remains to be understood concerning the relevant molecular surfaces and their interactions with biomolecules.

As regards metabolic activity, mineral surfaces are well-known as catalysts, but they can act as reaction media offering thermochemical conditions and allow macroscopic gradients and cyclical variations to produce the molecular-level imbalances characteristic of life. This includes chemical energy in the form of molecular-scale concentration gradients, and the appearance of proto-metabolic cycles including reactions with mineral surfaces. Minerals may also have played a role in compartmentalization, to offset dilutions that would destroy emerging prebiotic systems. (Issue proposal excerpts)

Animate Cosmos > Organic

Morrison, Shaunna, et al. The Paleomineralogy of the Hadean Eon Revisited. Life. 8/4, 2018. This paper in a special issue Minerals and Origins of Life (Lambert herein) by SM, Simone Runyon and Robert Hazen of the Carnegie Institution for Science, Washington, DC continues Hazen’s decade long project (search) to prove that planetary and extraterrestrial materials are conducive substrates for life to originate. (The Hadean Era is some 4.6 – 4.0 billion years ago.) His work with colleagues goes on to imply that appropriate mineral formations evolve in reciprocal tandem with living systems. By these insight, a long list of prebiotic organic materials and mineral species can be identified. Redox gradients and other reactivities in the mix reveal a native inherency made and meant for life to appear and develop. See also, for example Titan Mineralogy: A Window on Organic Mineral Evolution in American Mineralogist (Vol. 103, 2018).

A preliminary list of plausible near-surface minerals present during Earth’s Hadean Eon (>4.0 Ga) should be expanded to include: (1) phases that might have formed by precipitation of organic crystals prior to the rise of predation by cellular life; (2) minerals associated with large bolide impacts, especially through the generation of hydrothermal systems in circumferential fracture zones; and (3) local formation of minerals with relatively oxidized transition metals through abiological redox processes, such as photo-oxidation. Additional mineral diversity arises from the occurrence of some mineral species that form more than one ‘natural kind’, each with distinct chemical and morphological characteristics that arise by different paragenetic processes. A rich variety of chemically reactive sites were thus available at the exposed surfaces of common Hadean rock-forming minerals. (Abstract)

Animate Cosmos > Organic > Biology Physics

Marais, Adriana, et al. The Future of Quantum Biology. Journal of the Royal Society Interface. Vol.15/Iss.148, 2018. A dozen scientists from the University of KwaZulu-Natal, Durban, VU University, Amsterdam, and Cambridge University offer a latest report with 133 references of how a quantum transfer of energy and charge which involves superposition, coherence and entanglement can be seen at work in such areas as photosynthesis, enzyme catalysis, olfaction, respiration, neuronal sensations and onto cognition. Still another instance is their presence at life’s biophysical and biochemical origin and complexification.

Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes. Quantum biology is the study of such processes, and here we provide an outline of the current state of the field, as well as insights into future directions. (Abstract)

Animate Cosmos > Organic > Biology Physics

McFadden, Johnjoe and Jim Al-Khalili. The Origins of Quantum Biology. Proceedings of the Royal Society A. Vol.474/Iss.2220, 2018. A University of Surrey, UK biologist and a physicist who have each authored prior works (search) achieve a unique, thorough history of this incipient synthesis from A. N. Whitehead, Erwin Schrodinger and others such as organicists and vitalists, aka the Cambridge Theoretical Biology Club, to its worldwise fruition today. From this retro-vista, an Order from Order phrase can be coined, which is seen in effect by a flow of recent findings, as the abstract notes.

Quantum biology is usually considered to be a new discipline, arising from recent research that suggests that biological phenomena such as photosynthesis, enzyme catalysis, avian navigation or olfaction may not only operate within the bounds of classical physics but also make use of a number of the non-trivial features of quantum mechanics, such as coherence, tunnelling and, perhaps, entanglement. However, although the most significant findings have emerged in the past two decades, the roots of quantum biology go much deeper—to the quantum pioneers of the early twentieth century. We will argue that some of the insights provided by these pioneering physicists remain relevant to our understanding of quantum biology today. (Abstract)

Clearly, quantization applies to all matter at the microscopic scale and has long been assimilated into standard molecular biology and biochemistry. Today, quantum biology refers to a small, but growing, number of rather more specific phenomena, well known in physics and chemistry, but until recently thought not to play any meaningful role within the complex environment of living cells. (1)

What remains indisputable is that the quantum dynamics that are undoubtedly taking place within living systems have been subject to 3.5 billion years of optimizing evolution. It is likely that, in that time, life has learned to manipulate quantum systems to its advantage in ways that we do not yet fully understand. They may have had to wait many decades, but the quantum pioneers were indeed right to be excited about the future of quantum biology. (11)

Animate Cosmos > Organic > Universal

Brandao, Fernando, et al. Generic Emergence of Classical Features in Quantum Darwinism. Nature Communications. 6/7908, 2015. FB University College London, Marco Piani, University of Waterloo, Canada and Pawel Horodecki, Technical University of Gdansk press on with verifications and enhancements of W. Zurek’s original theory (see below) that multiple variations and selective retentions occur even within this deepest, austere realm. Fig. 1 is titled Quantum Darwinism treats the environment as a carrier of information, while Fig. 5 is Quantum correlations leads to classicality.

Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. (Abstract)

Animate Cosmos > Organic > Universal

Knott, Paul. Decoherence, Quantum Darwinism, and the Generic Emergence of Our Objective Classical Reality. arXiv:1811.09062. A University of Nottingham, Center for the Theoretical Physics of Quantum Non-Equilibrium Systems mathematician continues to make better sense of this theoretical frontier as it becomes more amenable and familiar. Visit the author’s website at knottquantum.weebly.com for publications, a blog and an illustrated book Our Quantum Reality with engaging entries to many concepts. An earlier version of his work with colleagues is Generic Emergence of Objectivity of Observables in Infinite Dimensions in Physical Review Letters (121/160401, 2018). Also check the UN Center for QS site for examples of how this arcane phase is lately seen to have multifractal, informative, gravity, algorithmic (1812.01032) qualities.

A University of Nottingham, Center for the Theoretical Physics of Quantum Non-Equilibrium Systems mathematician continues to make better sense of this theoretical frontier as it becomes more amenable and familiar. Visit the author’s website at knottquantum.weebly.com for publications, a blog and an illustrated book Our Quantum Reality with engaging entries to many concepts. An earlier version of his work with colleagues is Generic Emergence of Objectivity of Observables in Infinite Dimensions in Physical Review Letters (121/160401, 2018). Also check the UN Center for QS site for examples of how this arcane phase is lately seen to have multifractal, informative, gravity, algorithmic (1812.01032) qualities.

Animate Cosmos > Organic > Universal

Zurek, Wojciech. Quantum Theory of the Classical: Quantum Jumps, Born’s Rule, and Objective Classical Reality via Quantum Darwinism. arXiv:1807.02092. The LANL physicist and originator of the QD concept that even this basic phase forms many candidate states from which selections are made continues his project, with a growing number of advocates, to develop this considerable insight. It is couched in technical terms in need of editing and arrangement, but contributes to a global perception of a wholly evolutionary cosmos. See also Revealing the Emergence of Classicality in Nitrogen-Vacancy Centers by Thomas Undan, et al including Zurek at 1809.10456, and other entries (Paul Knott) herein.

The LANL physicist and originator of the QD concept that even this basic phase forms many candidate states from which selections are made continues his project, with a growing number of advocates, to develop this considerable insight. It is couched in technical terms in need of editing and arrangement, but contributes to a global perception of a wholly evolutionary cosmos. See also Revealing the Emergence of Classicality in Nitrogen-Vacancy Centers by Thomas Undan, et al including Zurek at 1809.10456, and other entries (Paul Knott) herein.

Animate Cosmos > Information > Quant Info

Mermin, David. Making Better Sense of Quantum Mechanics. Reports on Progress in Physics. 82/1, 2018. The veteran Cornell University physicist rightly observes that quantum studies have been impeded and burdened by an absence of philosophical thought or vision. (The late Stephen Hawking often claimed this.) So it remains an historical collection of disparate opinions. The first half of the paper is a shorter and longer essay on Quantum Bayesism (QBism) perspectives. It then broadly compares this model with writings from John Bell and Niels Bohr alphabetically to Erwin Schrodinger and Stephen Weinberg, 15 men in all. This leads to a section entitled There is no Classical World and a consequent new physics of Now. Mermin closes with his 2017 talk in the Czech Republic, as noted in the second quote.

We still lack any real consensus about what quantum mechanics means. The absence of conceptual clarity for almost a century suggests that the problem might lie in some implicit misconceptions about how scientific explanations are reached. I describe here some unvoiced but widely shared assumptions. This new view of physics requires physicists to think about science in an unfamiliar way. My primary purpose is to explain the new perspective and urge that it be taken seriously. My secondary aims are to explain why this perspective differs significantly from what Bohr, Heisenberg, and Pauli had been saying, and why it is not solipsism. To emphasize that this is a general view of science, and not just of quantum mechanics, I apply it to a long-standing puzzle in classical physics: the apparent inability of physics to give any meaning to 'Now' - the present moment. (Abstract)

Science starts with mind, the private library of experience for each of us. From the contents of our own experience each of us strives to assemble what that experience means about the world that gives rise to it. An all too common misreading of QBism in the popular scientific press is “It’s all mind”. This is as wrong as the opinion most physicists have about physics, that it’s all world. There is mind and there is a world. Quantum mechanics has taught us that we cannot understand what we are talking about without paying attention to both. What links the contents of my mind to the world that induces them is the meaning I construct for my experience. If I had to design a coat of arms for QBism, it would display three words: mysl, smysl, sv ̆et in poetic Czech which is Mind, Meaning, World. (15-16)

Animate Cosmos > Intelligence

Linde, Andrei. Universe, Life, Consciousness. www.andrei-linde.com/articles/universe-life-consciousness-pdf. This is a talk by the Russian-American, Stanford University philosophical cosmologist given at a 2015 Science and Nonduality Conference in California. Long ago I was fortunate to attend his first public lecture in the USA in September 1983 at Harvard where he spoke about a novel inflationary origin and a fractal multiverse of bubbling cosmoses. In the years since this theory has become an accepted version (with objections) as global science advanced from overhead slides to streaming videos. But Linde has a visionary side and here evokes an “eternally existing self-reproducing inflationary universe” due to quantum wave fluctuations which leads to the unusually important role played by the concept of an observer in cosmology. A mid 2010s result is another inference of a self-observing, participant universe. By these lights, the presence of informed, personal awareness would seem to be a phenomenal imperative by which to bring a genesis cosmos into being.

Is it not possible that consciousness, like space-time, has its own intrinsic degrees of freedom, and that neglecting these will lead to a description of the universe that is fundamentally incomplete? What if our perceptions are more real than material objects? Is it possible to introduce a “space of elements of consciousness,” and investigate that consciousness may exist by itself, even in the absence of matter, just like gravitational waves, exist in the absence of protons and electrons? Will it not turn out, with the further development of science, that the study of the universe and the study of consciousness will be inseparably linked? After the development of a unified geometrical description of the weak, strong, electromagnetic, and gravitational interactions, will the next important step be the development of a unified approach include the world of consciousness? (12)

Animate Cosmos > Thermodynamics

Ito, Sosuke. Unified Framework for the Second Law of Thermodynamics and Information Thermodynamics based on Information Geometry. arXiv:1810.09545. A Hokkaido University, Research Center of Mathematics for Social Creativity continues his project with colleagues to advance a synthesis of dynamic energies and an operational, prescriptive content. See also Stochastic Thermodynamic Interpretation of Information Geometry by SI at 1712.04311 (second abstract).

Information geometry, which is a differential geometric method of information theory, gives a natural definition of informational quantity from the projection theorem. We report that the second law of thermodynamics can be obtained from this projection onto the manifold of reversible dynamics. We also show that the recent result in stochastic thermodynamics with information theory, called as the second law of information thermodynamics. The hierarchy of these second laws can be discussed in terms of inclusion property of manifolds. (1810.09545 Abstract)

In recent years, the unified theory of information and thermodynamics has been discussed in the context of stochastic thermodynamics. The unified theory reveals that information theory would be useful to understand non-stationary dynamics of systems far from equilibrium. In this letter, we have found a new link between stochastic thermodynamics and information theory well known as information geometry. By applying this link, an information geometric inequality can be interpreted as a thermodynamic uncertainty relationship between speed and thermodynamic cost. (1712.04311 Abstract)

Animate Cosmos > Thermodynamics > autocat

Jee, Ah-Young, et al. Catalytic Enzymes are Active Matter. Proceedings of the National Academy of Sciences. 115/E10812, 2018. Center for Soft and Living Matter, Institute for Basic Science, South Korea researchers including Tsvi Tlusty cite theoretical and experimental reasons why this biological substance can well exhibit spontaneous activity.

Using a microscopic theory to analyze experiments, we demonstrate that enzymes are active matter. Superresolution fluorescence measurements—performed across four orders of magnitude of substrate concentration—show that catalysis boosts the motion of enzymes to be superdiffusive for a few microseconds, enhancing their effective diffusivity over longer timescales. Occurring at the catalytic turnover rate, these fast ballistic leaps maintain direction over a duration limited by rotational diffusion, driving enzymes to execute wormlike trajectories by piconewton forces. These findings violate the classical paradigm that chemical reaction and motility are distinct processes, and suggest reaction–motion coupling as a general principle of catalysis. (Abstract excerpt)

Animate Cosmos > Astrobiology

Maiolino, Roberto and Filippo Mannucci. De Re Metallica: The Cosmic Chemical Evolution of Galaxies. arXiv:1811.09642. In an invited review for Astronomy & Astrophysics, Cambridge University and Arcetri Observatory, Italy astrophysicists post a latest 119 page review of our collaborative, instrumental ability to quantify and describe to any extent the elemental and compound makeup of ancient stellar and galactic formations.

The evolution of the content of heavy elements in galaxies, the relative chemical abundances, their spatial distribution, and how these scale with various galactic properties, provide unique information on the galactic evolutionary processes across the cosmic epochs. In recent years major progress has been made in constraining the chemical evolution of galaxies and inferring key information relevant to our understanding of the main mechanisms involved in galaxy evolution. After an overview, we discuss the observed scaling relations between metallicity and galaxy properties, the observed relative chemical abundances, how the chemical elements are distributed within galaxies, and how these properties evolve across the cosmic epochs. (Abstract excerpt)

Animate Cosmos > Astrobiology

Sadjadi, SeyedAbdolreza and Quentin Parker. The Astrochemistry Implications of Quantum Chemical Modes Vibrational Analysis. arXiv.1811.08547. We note this entry by University of Hong Kong, Laboratory for Space Research astroscientists for its evidence of how cosmic materiality seems innately made to form biomolecular complexities, and as another instance of how collective human intellect can so readily explore and quantify any width and depth of this universal spacescape. Surely there must be some grand reason and purpose if me + We might just be able to ask.

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7  Next