(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

VI. Life’s Cerebral Faculties Become More Complex, Smarter, Informed, Proactive, Self-Aware

2. The Evolution of Cerebral Form and Cognizance

Clark, Damon, et al. Scalable Architecture in Mammalian Brains. Nature. 411/189, 2001. The growing quantification of a linear expansion of modular component and overall brain size during animal evolution.

Within each taxon, brain regions are scalable, tending to maintain fixed proportionality of size to one another independent of absolute total brain volume. This suggests that, within a taxon, the development of multiple brain regions is governed by a common set of mechanisms. (192)

Collins, Christopher. Paleopoetics: The Evolution of the Preliterate Imagination. New York: Columbia University Press, 2013. From our late vantage an emeritus New York University cultural scholar reconstructs the ancient neural and cognitive course of how life came to express itself and ones natural surround by way of poetic image and rhetorical utterance. Again Merlin Donald’s episodic, mimetic, mythic, and theoretic stages from primates to people are a guide. But as the second quote evokes, a novel advance is to trace a “dual-process” mental sequence from original holistic scenarios to a serial, discrete, object mode as proto-languages arose. Collins goes on to cite a similarity with right and left brain hemisphere attributes, rarely do you find this evident connection. By virtue of this temporal sequence, an archetypal complementarity of both yin and yang-like phases, per the fourth quote, can be affirmed.

How may one avail this incisive work? On page 120 a timeline runs from an Episodic Epoch some 2.5 mya onto an imitative Mimetic Pleistocene, and as hominids began to speak and inscribe to a Mythic stage. As linguistic content became recorded in external repositories, a societal Theoretic phase intensifies to this day. A strong recapitulation is revealed between personal ontogeny and humankind’s whole evolutionary phylogeny. A further surmise would be the gender essence of these complements, a prior integral feminine milieu supplanted by a particulate masculine rule. In retrospect may a worldwide me and We perceive life's cerebral, cognitive development, individually and collectively, as a genesis universe trying to witness, learn and narrate itself into neonatal existence?

As for my particular venture into Big History, its ultimate purpose is not simply to time-travel to earlier stages in the evolution of the human mind but rather to explore the depths you and I have within our minds here and now, those deep foundations within which certain strings of words have the power to resonate with astonishing results. Accordingly, my first premise is this: the human brain is an embodiment of its own evolutionary narrative. My second premise is that, broadly defined, poetry is the brain’s use of language to recover knowledge that is at once deeply past and deeply present. (9)

Chapter 2, “From Dualities to Dyads,” begins my exploration of cognitive skills preadaptive to language with a consideration of Dual-Process Theory. This field, which emerged in the mid-1990s, posits the coexistence in the brain of two distinct cognitive systems, one intuitive, the other deliberative, a bipartite arrangement reminiscent of the right-hemisphere/left hemisphere duality. Since the intuitive system comprises cognitive features shared with nonhuman animals and the deliberative system is uniquely human, the evolutionary implications of Dual-Process Theory make it highly relevant to paleopoetics. (19)

Information Processing: The Parallel and Serial Modes Much of what I have just described as multitasking and bimanual coordination has been parallel output. From an evolutionary perspective, the parallel mode is as old as unicellular life forms. It is the default mode: in any emergency, living things opt for the parallel processing of incoming perceptions and of outgoing actions. When the serial mode later emerged, it became as narrow as the parallel was broad, its attention to incoming information and outgoing action as sharply focused as parallel attention was diffusely distributed. (43)

In the 1990s, the phrase “massively parallel” became a shibboleth among those who were then discovering the similarities between the brain and the compute as information processors. Serial processing, by contrast, connotes a rather unspectacular plodding along of impulses or thoughts. Since it must be efficient in both modes, the brain might be more accurately described as “massively complementary.” This is especially true of visual cognition, which is possible only through the complementary (dyadic) relationship of figure to ground, of ventral to dorsal streams, and of allocentric to egocentric frames of reference. (100)

De la Fuente, Ildefonso, et al. Evidence of Conditioned Behavior in Amoebae. Nature Communications. 10/369, 2009. Twelve Spanish systems biologists describe the clever ways by which to perceive the life’s associative learning method in effect even in these early, unicellular organisms.

Associative memory is the main type of learning by which complex organisms endowed with evolved nervous systems respond to environmental stimuli. It has been found in different multicellular species, from cephalopods to humans, but never in individual cells. Here we describe a motility pattern consistent with associative conditioned behavior in the microorganism Amoeba proteus. We confirm a similar behavior in a related species, Metamoeba leningradensis. Thus, our results indicate that unicellular organisms can modify their behavior during migration by associative conditioning. (Abstract)

Donald, Merlin. The Definition of Human Nature. Rees, Dai and Steven Rose, eds. The New Brain Sciences. Cambridge: Cambridge University Press, 2004. The Canadian psychologist reiterates his highly regarded synthesis of the emergence of intelligence in mammals, primates, hominids and homo sapiens, which is the subject of previous two books noted on the website. This article makes a distinction between an earlier holistic, non-symbolic, neural net cognition in the animal kingdom and a symbol-driven, increasingly language-based mode that could form representations in memory. The great advance that defines evolving human beings is an externally stored, composite culture.

Donald’s succinct review suggests these reflections: in retrospect, the long evolution of cognitive faculties seems akin to the maturation of a singular planetary brain, for it passes through the same stages. The prior neural, “hologram-like” phase, in interaction with an environment, is more right brain, while later quantitative abilities are left hemisphere in kind. Human cerebral development proceeds in the same fashion. Moreover, it is noted that children learn to speak and remember by passing through the similar mimetic, mythic, and so on sequence as the human species did.

Cognition in humans is a collective product. The isolated brain does not come up with external symbols. Human brains collectively invent symbols in a creative dynamic process. (43) A more adequate description of human symbolic literacy would encompass all the skills needed to use every kind of permanent external symbol, from the pictograms and line drawings of the Upper Palaeolithic, to the astrolabes and alchemical diagrams of the medieval era, to the digital information codes used in modern electronic communications. (53) We might still be able to think of ourselves as ‘monads’ in the Leibnizian sense; that is, self-contained entities bounded by our skin membranes. But, as peripatetic minds plugged into a network, we are immersed in a gigantic external memory environment within which we can move around. (58)

Eichler, Katherina, et al. The Complete Connectome of a Learning and Memory Centre in an Insect Brain. Nature. 548/175, 2017. 17 researchers with postings at the Howard Hughes Medical Institute, University of Konstanz, Columbia University, Johns Hopkins University, Leibniz Institute for Neurobiology, and Cambridge University achieve the first full-scale diagram of higher order neural circuits for a Drosophila larvae mushroom body. We add to record how the connectome model can be readily applied to this early, rudimentary stage. Altogether an inkling of life’s evolution as a gestational development is suggested, which just now reaches a novel, consummative phase of its own self-reconstruction.

Ellis, Ralph and Natika Newton, eds. Consciousness & Emotion: Agency, Conscious Choice, and Selective Perception. Amsterdam: John Benjamins, 2005. Technical papers on the brain’s self-organizational dynamics with an emphasis on the “enaction” school of the late Francisco Varela and colleagues.

Estep, Myrna. Self-Organizing Natural Intelligence. Berlin: Springer, 2006. An Indiana University polymath scholar contests the vested academic view of a narrow, linear, machine-like intellectual capacity, in favor of new appreciations of a nonlinear dynamical nature trying by way of creature and cognition to discover and know itself. A good example of a revolution in our midst to recognize and explain a life and person-friendly natural genesis universe.

I have approached natural intelligence as a multi- and interdisciplinary phenomenon. I view intelligence as very much a part of the natural world and hence as a living thing, an emerging richly textured set of patterns that are highly complex, dynamic, self-organizing, and adaptive. (xxv) Self-organization refers to kinds of pattern-formation processes found in both physical and biological systems. Patterns in self-organizing systems emerge at global levels from large numbers of interactions among lower level components of those systems. (40)

Falk, Dean and Kathleen Gibson, eds. Evolutionary Anatomy of the Primary Cerebral Cortex. Cambridge: Cambridge University Press, 2001. An array of papers which recognize and extend the allometric studies of Harry Jerison on how the evolving brain acts as a single, coordinated organ which expands in overall size through the relative enlargement of its component modules. Michel Hofman notes that our hominid brain has reached structural and energetic limits and further advances in intelligence need take place in the realm of technological evolution.

Finlay, Barbara and Richard Darlington. Linked Regularities in the Development and Evolution of Mammalian Brains. Science. 268/1578, 1995. In the frequently cited paper, a consistent linear scale is seen to occur over an evolutionary time span as ten brain subdivisions steadily expand in size with total brain volume.

Analysis of data collected from 131 species of primates, bats and insectivores showed that the sizes of brain components from medulla to forebrain are highly predictable from absolute brain size by a non- linear function. The order of neurogenesis was found to be highly conserved across a wide range of mammals and to correlate with the relative enlargement of structures as brain size increases, with disproportionately large growth occurring in late-generated structures. (1578)

Freeman, Walter. Societies of Brains. Mahwah, NJ: Erlbaum, 1995. An eminent and innovative researcher in nonlinear neuroscience explains the self-organizing dynamics of cerebral evolution and cognitive performance.

Phylogenetic trees of brains in Molluscs (octopuses), Arthropods (spiders) and vertebrates (possums) show a series of increasing complexity. I think there is an equivalent tree of conscious beings ranked in order of capacity. (136)

Fuster, Joaquin. Cortex and Mind: Unifying Cognition. Oxford: Oxford University Press, 2003. A veteran neuroscientist proposes that the brain operates by integrating its modular domains into dynamic neural networks by which it represents its external locale. In so doing its “Newtonian” phase of modularity is said to be expanded to the important “Relativity” of context and relations. A tacit assumption holds throughout that individual cognition necessarily recapitulates the evolutionary formation of brain anatomy and mental abilities.

To characterize the cognitive structure of a cortical network, I use the term cognit, a generic term for any representation of knowledge in the cerebral cortex. A cognit is an item of knowledge about the world, the self, or the relations between them….In any case, a cognit is defined by its component nodes and by the relations between them. In neural terms, the cognit is made up of assemblies of neurons and the connections between them. (14)
In phylogeny as in ontogeny, the development of the receptive and productive aspects of language is correlated with the development of the cortices of association. (181) In evolution, animals have become progressively more efficient at processing more information in the pursuit of their goals. As intelligence tests show, the same thing is true for a human in his or her formative years. (215)

Gabora, Liane and Kirsty Kitto. Concept Combination and the Origins of Complex Cognition. Swan, Liz, ed. Origins of Mind. Berlin: Springer, 2012. University of British Columbia and Queensland University of Technology psychologists propose, and carefully defend, that an evolutionary advance to modern humans was aided by novel abilities to place isolated objects and episodes into a contextual ground. The cultural stages of Merlin Donald are surely drawn upon, similar to Chris Collins’ Paleopoetics, which this theory well aligns with. As a result, life’s penchant for enhanced creativity is explained through better ways to join artifacts and experiences into new combinations and perspectives. (One is reminded of Arthur Koestler’s 1970s bi-association model.) View each author’s publications for more creative insights about emergent human imaginations, often rising from quantum realms. And may we altogether lately glimpse a self-creating natural genesis that is trying to discover and choose itself?

At the core of our uniquely human cognitive abilities is the capacity to see things from different perspectives, or to place them in new context. We propose that this was made possible by two cognitive transitions. First, the large brain of Homo erectus facilitated the onset of recursive recall: the ability to string thoughts together into a stream of potentially abstractor imaginative thought. Computational modeling of recursive recall in an agent-based artificial society resulted in the agents generating more diverse and valuable cultural outputs. We propose that the capacity to see things in context was enhanced much later, following the appearance of anatomically modern humans. This second transition was brought on by the onset of contextual focus: the capacity to shift between a minimally contextual analytic mode of thought, and a highly contextual associative mode of thought, conducive to combining concepts in new ways and ‘breaking out of a rut’. We summarize how both transitions can be modeled using a theory of concepts, and how they interact and shift in meaning when they appear in different contexts. (Abstract)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  Next  [More Pages]