(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Introduction
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Glossary
Recent Additions
Search
Submit

Recent Additions: New and Updated Entries in the Past 60 Days
Displaying entries 76 through 90 of 110 found.


Earth Life Emergence: Development of Body, Brain, Selves and Societies

Earth Life > Sentience > Brain Anatomy

Melchionna, M., et al. Macroevolutionary Trends of Brain Mass in Primates. Biological Journal of the Linnean Society. 129/1, 2020. In this consummate year, nine evolutionary neuroscientists across Italian universities and institutes confirm life’s advancing cerebral encephalization and resultant cognitive attributes on the way to human acumen. And to reflect on their illustrated report, whomever at present is this worldwise personsphere emerging from homo to Anthropo sapience to gain a retrospective vista and import?

A distinctive trait in primate evolution is the expansion in brain mass. The potential drivers of this encephalization process due diversification dynamics are still debated. We assembled a phylogeny for 317 primate species of both extant and extinct taxa so as to identify trends in brain mass evolution. Our findings show that Primates as a whole follow a macroevolutionary increase in accord with more body mass, relative brain size and speciation rate over time. We also find that hominins, starting with Australopithecus africanus in the Oligocene, stand out for distinctly higher rates. (Abstract excerpt)

Earth Life > Sentience > Brain Anatomy

Pontes, Anselmo, et al. The Evolutionary Origin of Associative Learning. American Naturalist. 195/1, 2020. By way of clever digital simulations in Richard Lenski’s lab, Michigan State University researchers including Christoph Adami test whether this analogic edification, drawn much from Simona Ginsberg and Eva Jablonka (see definitions below), is actually in effect. Indeed, results over many generations show that life does become smarter by a constant, iterative, combinational process of trials, errors and successes for both entities and groups. From 2020, a central developmental trend of “stepwise, modular, complex behaviors” as an open-ended creativity is evidentially traced and oriented.

Learning is a widespread ability among animals and is subject to evolution. But how did learning first arise? What selection pressures and phenotypic preconditions fostered its evolution? Neither the fossil record nor phylogenetic comparative studies provide answers. Here, we study digital organisms in environments that promote the evolution of navigation and associative learning. Starting with a sessile ancestor, we evolve multiple populations in four environments, each with nutrient trails with various layouts. We find that behavior evolves modularly and in a predictable sequence. Environmental patterns that are stable across generations foster the evolution of reflexive behavior, while environmental patterns that vary across generations but remain consistent for periods within an organism’s lifetime foster the evolution of learning behavior. (Abstract excerpt)

Associative learning is a theory that states that ideas reinforce each other and can be linked to one another. Associative learning is a principle that states that ideas and experiences reinforce each other and can be linked to one another, making it a powerful teaching strategy. Associative learning, in animal behaviour, is a process in which a new response becomes associated with a particular stimulus.

Earth Life > Sentience > Brain Anatomy

Thiebaut de Schotten, Michel and Karl Zilles, eds. The Evolution of the Mind and Brain. Cortex. 118/1, 2019. An introduction to this special issue with some 20 entries such as The Biological Bases of Color Categorization from Goldfish to the Human Brain, The Left Cradling Bias, Large Scale Comparative Neuroimaging, and The Hippocampus of Birds in a View of Evolutionary Connectomics.

Earth Life > Sentience > Bicameral Brain

Vallortigara, Giorgio and Lesley Rogers. A Function for the Bicameral Mind. Cortex. Online December, 2019. The University of Trento, Italy and University of New England, Australia senior scholars continue to advance understandings of the pervasive presence and advantages across all phyla of dual brain hemispheres with opposite but complementary discrete particle (seed, me) or whole image (relations, We) attributes. This deep evolutionary benefit is most manifest in human cerebral activity, but we seem to work against this reciprocity as evident by local and global political conflicts. (Here is an example of a worldwide scientific discovery about a vital neural anatomy across animal kingdoms which a male (dots only) academia is unable to comprehend.)

A lateralized brain, in which each hemisphere processes sensory inputs and carries them out in different ways, is common in vertebrates, and it now reported for invertebrates too. As shown in many animal species, having a lateralized brain can enhance the capacity to perform two tasks at the same time. Why is this the case? Not only humans, but also most non-human animals, show a similar pattern of directional asymmetry. For instance, from fish to mammals most individuals react faster when a predator approaches from their left side. Using mathematical theory of games, it has been argued that the population structure of lateralization may result from the type of interactions asymmetric organisms face with each other. (Abstract excerpt)

Earth Life > Sentience > Evolution Language

Huang, Mingpan, et al. Male Gibbon Loud Morning Calls Conform to Zipf’s Law of Brevity and Menserath’s Law: Insights into the Origin of Human Language. Animal Behavior. January, 2020. This entry by Sun Yat-Sen University linguists is notable because it reports how these lawful features similarly serve to guide these vocal displays amongst primates. Such a result suggests that they commonly apply across all manner of creaturely communications. See also The Speech-like Properties of Nonhuman Primate Vocalizations by Thore Bergman, et al in this journal (151/229, 2019).

The study of vocal communication in nonhuman primates offers critical insight into the origins of human language. Although human language represents a highly derived and complex form of communication, researchers have found that the organization of language follows a series of common statistical patterns, known as ‘linguistic laws’. Zipf's law of brevity and Menzerath's law are pervasive (see below). Here, we provide evidence that the long-distance morning calls of male gibbons follow both laws. Zipf's law of brevity and Menzerath's law. Our findings thus support the generality of these two linguistic laws.. (Abstract)

Zipf's law is an empirical law which uses mathematical statistics to refer to the fact that much data studied in the physical and social sciences can be approximated by a family of related discrete power law probability distributions. Menzerath's law is a linguistic law whence the increase of the size of a linguistic construct results in a decrease of the size of its constituents, and vice versa, e.g., the longer a sentence, the shorter the clauses.

Earth Life > Sentience > Evolution Language

Mehr, Samuel, et al. University and Diversity in Human Song. Science. 366/eaao868, 2019. Some 19 researchers posted in the USA, Germany, and Canada including Stephen Pinker report upon a comprehensive, cross-cultural study of the past and present occasion of melodious communication, with and without words, which well confirms its personal and societal significance. See also a commentary The World in a Song by Tecumseh Fitch and Tudor Popescu in the same issue.

What is universal about music, and what varies? We built a corpus of ethnographic text on musical behavior from a representative sample of the world’s societies, as well as a discography of audio recordings. The ethnographic corpus reveals that music varies along three formality, arousal, and religiosity aspects, more within societies than across them; and that music is associated with behavioral contexts such as infant care, healing, dance, and love. In addition, acoustic features of tonality are almost universal; music varies in rhythmic and melodic complexity; and elements of melodies and rhythms found worldwide follow power laws. (Abstract excerpt)

Earth Life > Sentience > Evolution Language

Prieur, Jacques, et al. The Origins of Gestures and Language: History, Current Advances and Proposed Theories. Biological Reviews. Online December, 2019. Free University of Berlin and University of Rennes, CNRS animal ethologists scope out multimodal and multicausal influences for an array of primate forebears to reconstruct how our emergent result came to have such conversational facilities.

Investigating the mechanisms underlying human and non‐human primate communication systems (gestures, vocalisations, facial expressions) can shed light on the evolutionary roots of language. Reports on non‐human primates, particularly great apes, suggest that gestural communication would have been a crucial prerequisite for the emergence of language. We review three processes that can explain great apes' gestural acquisition: phylogenetic ritualisation, ontogenetic ritualisation, and learning via social negotiation. We thus propose a theory of language origins which postulates that primates' communicative signalling is a complex trait shaped by a cost–benefit trade‐off of signal production and processing of interactants in relation to four interlinked categories of evolutionary and life cycle factors: species, individual and context‐related characteristics as well as behavior. (Abstract excerpt)

Earth Life > Sentience > Evolution Language

Townsend, Simon, et al. Compositionality in Animals and Humans. PLOS Biology. 16/8, 2018. As this long title word gains currency (search) to describe how our language “composes” itself, University of Zurich, Warwick, UK, and of Neuchatel, Switzerland comparative linguists including Sabrina Engesser and Nalthasar Bickel elucidate how this quality can likewise be seen in formative effect across multi-faceted creaturely communications. See also Call Combinations in Birds and the Evolution of Compositional Syntax by Toshitaka Suzuki, et al, in this journal and date.

origins of language’s syntactic structure. One approach seeks to reduce the core of syntax in humans to a single principle of recursive combination for which there is no evidence in other species. We argue for an alternative approach. We review evidence that beneath the complexity of human syntax, there is an extensive layer of nonproductive, nonhierarchical syntax that can well be compared to animal call combinations. This is the essential groundwork that must be in place before we can elucidate, with sufficient precision, what made it possible for human language to explode its syntactic capacity from simple nonproductive combinations. (Abstract edits)

Earth Life > Genetic Info

Barabasi, Daniel and Albert-Laszlo Barabasi. A Genetic Model of the Connectome. Neuron. 105/1, 2020. A son and father team a few miles apart at Harvard University (doctoral candidate) and Northeastern University (professor, group leader, founding theorist, search) apply mathematic scale-free network topologies such as biclique graphs (see below) to better trace and join regulatory genomes with cerebral multiplex intricacies. As A-L S’s 2016 Network Science conveys, from its 1998 advent, an ever wider anatomy/physiology-like webwork has been cast and quantified which now spreads from galactic clusters to literary works, and every node/link entity phase in between.

The connectomes of organisms of the same species show architectural and often local wiring similarities, which raises the question: where and how is neuronal connectivity encoded? Our premise is that the genetic identity of neurons should guide synapse and gap-junction formation and show that genetically driven wiring predicts the existence of specific biclique (see below) motifs in the connectome. We identify significant biclique subgraphs in the connectomes of three species and show that the neurons share expression patterns and morphological characteristics. Our proposed model thus offers a self-consistent framework to link the genetics of an organism to the reproducible architecture of its connectome. (Abstract excerpt)

Biclique: A special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set.

Earth Life > Genetic Info

Mozziconacci, Julien, et al. The 3D Genome Shapes the Regulatory Code of Developmental Genes. arXiv:1911.04779. Drawing upon the latest research results, Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensé theoretical geneticists JM, Melody Merle and Annick Lesne contribute a deeper conceptual appreciation of nature’s pervasive, semantic, prescriptive source program.

We revisit the notion of gene regulatory code in embryonic development in the light of new findings about genome spatial organisation. By analogy with the genetic code, we posit that the concept of code can only be used if the corresponding adaptor can clearly be identified. An adaptor is here defined as an intermediary physical entity mediating the correspondence between codewords and objects. In our context, the encoded objects are gene expression levels, while specific transcription factors in the cell nucleus provide the codewords. We propose that an adaptor for this code is the gene domain, that is, the genome segment comprising the gene and its enhancer regulatory sequences. (Abstract excerpt)

Our starting point is the definition of a code that will be used in the present text. Different meanings of this word are encountered in science, from the secret codes in cryptography, the source codes in computer science, to the neural codes and the genetic code. The latter is the emblematic example of a semantic code, in a biological context. The definition of a semantic code relies on three ingredients, namely codewords, objects, and adaptors: codewords are inputs to be interpreted; a single object is associated to each codeword; adaptors are physical entities that implement the association of each codeword with a unique object. (3)

Earth Life > Integral Persons > Somatic

Cao, Miao, et al. Developmental Connectomics from Infancy through Early Childhood. Trends in Neuroscience. 40/8, 2019. Connectome: a complete set of neural elements (neurons, brain regions, etc.) and their interconnections (synapses, fiber pathways, temporal correlations.) Beijing Normal University and Children’s Hospital of Philadelphia cognitive neuroresearchers describe novel computational neuroimaging and neurophysiological methods which are revealing the course followed by cerebral architectures as they mature over the first five years of our lives. See also Mechanisms of Connectome Development by Marcus Kaiser in Trends in Cognitive Sciences (21/9, 2017).

The human brain undergoes rapid growth in both structure and function from infancy through early childhood, which influences cognitive and behavioral development in later life. The new developmental connectomics research field provides new opportunities to study developing brain through the non-invasive mapping of structural and functional connectivity patterns. We investigate connectome formation from 20 postmenstrual weeks to 5 years of age with regard to five fundamental principles of strengthened segregation/integration balance, hierarchical order from primary to higher-order regions, structural and functional maturations, individual variability, and vulnerability to risk factors and developmental disorders. (Abstract excerpt)

Earth Life > Integral Persons > Cerebral Form

Baumgarten, Lorenz and Stefan Bornholdt. Critical Excitation-Inhibition Balance in Dense Neural Networks. arXiv:1903.12632. University of Bremen theorists contribute to later 2010s research findings that our (microcosmic) cerebral faculty inherently seeks and performs best at this tamper-down and/or ramp-up emotional and cognitive state. How grand might it then be if nature’s (macroscopic) tendency to reach such an optimum reciprocity could be carried over and availed in social politics whence dual right-conserve and left-create parties would be complementary halves of a whole organic democracy.

The "edge of chaos" phase transition in artificial neural networks is of renewed interest in light of recent evidence for criticality in brain dynamics. A recent study utilizing the excitation-inhibition ratio as the control parameter found a new, nearly degree independent, critical point when neural connectivity is large. However, the new phase transition is accompanied by a high level of activity in the network. Here we study random neural networks with the additional properties of (i) a high clustering coefficient and (ii) neurons that are either excitatory or inhibitory, a prominent property of natural neurons. As a result, we observe an additional critical point for networks with large connectivity which compares well with neuronal brain networks. (Abstract excerpt)

Earth Life > Integral Persons > Cerebral Form

Wang, Jilin, et al. Non-equilibrium Critical Dynamics of Bursts in θ and δ Rhythms as Fundamental Characteristic of Sleep and Wake Micro-architecture. PLoS Computational Biology. November, 2019. As the 2010s come to a close, in this Public Library of Science journal Boston University and UM Worcester Medical School researchers including Plamen Ivanov describe experiments and theories so as to report that even our daily resting phase is distinguished by independent, universal complex phenomena. Thus nighttime joins daylight wakefulness which, as Systems Neuroscience cites, prefers to be poised between more or less order. A person’s beingness then joins a quantum, universal complementarity which all other phases and site sections lately attest to. Once again microcosmic selves are vital exemplars of a macrocosmic genesis.

Origin and functions of intermittent transitions among sleep stages, including short awakenings and arousals, challenge the current homeostatic framework for sleep regulation. Here we propose that a complex micro-architecture characterizing the sleep-wake cycle results from an underlying non-equilibrium critical dynamics, bridging collective behaviors across spatio-temporal scales. We demonstrate that intermittent bursts in θ and δ rhythms exhibit a complex temporal organization, with long-range power-law correlations and a robust duality of θ-bursts (active phase) and exponential-like δ-bursts (quiescent phase) durations, which are typical features of non-equilibrium systems self-organizing at criticality. Importantly, such temporal organization relates to anti-correlated coupling between θ- and δ-bursts, and is independent of the dominant physiologic state, a solid indication of a basic principle in sleep dynamics. (Abstract excerpt)

The results demonstrate that critical dynamics underlie cortical activation during sleep and wake, and lay the foundation for a new paradigm, considering sleep micro-architecture as a non-equilibrium process and self-organization among neuronal assemblies to maintain a critical state, in contrast to the homeostasis paradigm of sleep regulation at large time scales. (Author Summary)

Power-law distributions are the statistical hallmark of scale invariance, and are typical features of physical systems at the critical point of a second order phase transition in equilibrium thermodynamics. At criticality systems exhibit high sensitivity to interactions among elements, leading to emergent collective behavior across scales, and thus, power laws. The critical point is located at the border between an ordered and a disordered phase, and can be reached by fine tuning external parameters. In contrast to this scenario, in non-equilibrium systems the dynamics can be spontaneously driven at criticality, where an active phase characterized by bursts/avalanches with power-law distributed sizes and durations coexists with a quiescent phase with exponential-like statistics. (3-4)

Earth Life > Integral Persons > Conscious Knowledge

Cleeremans, Axel, et al. Learning to be Conscious. Trends in Cognitive Sciences. December, 2019. As the abstract cites, a “meta-representation” is a “second-order” stage of a brain’s conceptual content so that a person can know that they know. Eight Free University of Brussels cognitive psychologists conceive a synthesis akin to integrated information theory such that the more someone gains vital knowledge, the more actively aware s/he becomes. In regard, by a mega-historic view we might refer to the “Great Learning” of Chinese tradition (Sterckx, Roel) and our 21st century sapiensphere to get a retrospective upon our grand Earthly and cosmic endeavor of sentient self-realization.

Different theories of consciousness have proposed many mechanisms to account for phenomenal experience. Here, appealing to aspects of global workspace theory, higher-order theories, social theories, and predictive processing, we introduce a novel framework: the self-organizing meta-representational account (SOMA), in which consciousness is viewed as something that the brain learns to do. By this account, the brain continuously and unconsciously learns to redescribe its own activity to itself, so developing systems of first-order representations. In this sense, consciousness is the brain’s (unconscious, embodied, enactive, nonconceptual) theory about itself. (Abstract)

Earth Life > Integral Persons > Gender

Keresztes, Laszlo, et al. Identifying Super-Feminine, Super-Masculine and Sex-Defining Connections in the Human Braingraph. arXiv:1912.02291. Eotovos University, PIT Bioinformatics Group researchers continue their project to avail the latest flow of neuroimaging results, now available via open access, which further support these title gender distinctions (search Balazs Szalkai for earlier postings). As the quotes say, ever again a woman’s cognitive faculties are found to be generally superior to male capacities.

For more than a decade now, thousands of cerebral connections with diffusion magnetic resonance imaging (dMRI) techniques have been achieved and published. In the present contribution, by applying the 1200 Subjects Release of the Human Connectome Project, we identify just 102 connections out of the total number of 1950 connections in the 83-vertex graphs of 1065 subjects, without any error about the sex of the subject. We were able to identify two graph edges out of these 102, whose weights measured in fiber numbers are high, then the connectome belongs to a female subject, independent of other edges. Similarly, we have identified 3 edges from these 102, whose weights, if two of them are high and one is low, imply that the graph belongs to a male subject. We call the former state super-feminine and the other super-masculine. (Abstract excerpt)

It is known for several years that the female and the male connectomes have different properties as graphs. The work of [28] has proven – on a publicly un-available dataset – that the ratio of inter-hemispheric connections vs. the intra-hemispheric connections differs in males and females. Our group has shown on a publicly available dataset that several deep graph-theoretical properties, which are usually applied in the characterization of the quality of large computer interconnection networks [29], are better in the braingraphs of women than in men. (2)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  Next