![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet, Incubator Lifescape1. Quantum Cosmology Theoretic Unity Lloyd, Seth. The Digital Universe. Physics World. November, 2008. The director of the Center for Extreme Quantum Information Theory at MIT makes a succinct case for a cosmos essentially composed of and understandable by software and hardware, a “computational” reality. A cousin to Stephen Wolfram’s “cellular automata” new science, this approach, although advancing a dual realm, remains mechanistic in kind. Yet one wonders since Lloyd extols the molecular double helix as a prime example, might by a simple turn of metaphor could a “genetic” universe be apprehended. Such an informational literacy could in a stroke become akin to a “cosmic genetic code.” This fertile materiality, akin to a person, would both be an independent source while manifest in the complex living forms unto us that it spawns and evolves. And by consequence, would it not imply primordial, maternal and paternal complements? This is the grand Ptolemaic to Copernican, machine to gestation, revolution just now there for the asking. Information and computation are not merely social and technological phenomena. Information lies at the heart of physical law: the physical quantity called entropy is in fact information about the microscopic motions of matter. Every atom and elementary particle carries with it bits of information. (30) The digital nature of the universe finds one of its most elegant expressions in the genetic code: a strand of human DNA contains two bits per base pair and registers about six billion bits in its three billion base pairs. (32) The combination of the holographic principle with the quantum geometric limit suggests a full computational picture of the universe. The universe consists of information/bits located in space, and events/bit-flips occurring in space-time. (35-36) Loll, Renata. Quantum Gravity from Causal Dynamical Triangulations: A Review. arXiv:1905.08669. The Radboud University and Perimeter Institute theorist continues her collegial studies of a fantastic cosmos which we peoples evolve and emerge and awaken from with our phenomenal abilities to explore and learn. A natural philoSophia might then be that we are the very microcosmic selves who are made and meant to so quantify, realize, affirm and take forward a procreative genesis universe. We give a topical, comprehensive overview and assessment of recent results in Causal Dynamical Triangulations (CDT), a modern formulation of lattice and quantum gravity nonperturbatively from a scaling limit of the lattice-regularized theory. In this manifestly diffeomorphism-invariant approach one has computational access to a Planckian spacetime regime, which is explored with the help of invariant quantum observables. During the last few years, there have been numerous new and important developments and insights concerning the theory's phase structure, the roles of time, causality, diffeomorphisms and global topology, and renormalization group methods. We will focus on these new results, primarily in four spacetime dimensions, and their geometric and physical implications. (Abstract edit)
Loll, Renate.
The Emergence of Spacetime or Quantum Gravity on Your Desktop.
Classical and Quantum Gravity.
25/114006,
2008.
The Utrecht University physicist describes her work with colleagues Jan Ambjorn and Jerzy Jurkiewicz (see Quantum Cosmology) related their theory of “causal dynamical triangulations” (Google for more info). As a novel approach to loop quantum gravity, it portends to reveal a self-similar fractal structure as the essence of time and space. Also Google their 2005 arXiv paper: Reconstructing the Universe. Loll, Renate, et al. Quantum Gravity in 30 Questions. . . For a summer tutorial, Radboud University, The Netherlands, University of Naples, and University of Szczein, Poland theoretical physicists course through topics such as Why should I learn about perturbative gravity, What technical tools are needed to make progress, and What is loop quantum gravity. One wonders who are we enabled, brave students who proceed to learn about and quantify, re-present thes sidereal stretches. And for what procreative purpose. Quantum gravity is the missing piece in our understanding of the fundamental interactions today. Given recent observational breakthroughs in gravity, providing a quantum theory is more urgent than ever. We provide a guided tour in the form of 30 questions which ranged from basic motivational and background material to a critical assessment of the status quo and future of the subject. We highlight the identification of quantum observables and the development of effective numerical tools as critical to future progress. (Excerpt)) Luminet, Jean-Pierre. The Status of Cosmic Topology after Planck Data. Universe. December, 2015. In this online journal, the CNRS Marseille astronomer reports that an overall cosmic geometry does indeed exist, as found by our composite Earthwide technical investigation. We cite for this reason, and once more to record how fantastic it is that such beings as us on the frozen crust of a bioworld are yet able in a few years to fathom these vast dimensions and lineaments. Surely there ought and must be an intent and purpose for such discoveries, some greater creation to participate in and contribute to. In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB) obtained by WMAP and Planck telescopes. Cosmic Topology involves both global topological features and more local geometrical properties such as curvature. It deals with questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller or greater than its observable counterpart. A striking feature of some relativistic, multi-connected small universe models is to create multiples images of faraway cosmic sources. While the last CMB (Planck) data fit well the simplest model of a zero-curvature, infinite space model, they remain consistent with more complex shapes such as the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. (Abstract) Mastichiadis, Apostolos, et al. A Roadmap to Hadronic Supercriticalities. arXiv:2003.06956. A Roadmap to Hadronic Supercriticalities. arXiv:2003.06956. We cite this entry by National University of Athens astrophysicists for itself and for wider implications. When this site went online in the early 2000s there was little if any notice of such complexities across the celestial raiment. Today it is readily accepted that nonlinear phenomena like critical phase transitions occur in this widest realm, just as everywhere else. Once again a natural universality is found which well implies an independent, mathematical source. A philoSophia glimpse would be how grand it is that collaborative persons from this ancient land are now able to travel to and quantify this cosmic breadth and depth. Hadronic supercriticalities are radiative instabilities that appear when large amounts of energy are stored in relativistic protons. When the proton energy density exceeds some critical value, a runaway process is initiated resulting in the explosive transfer of the proton energy into electron-positron pairs and radiation and the increase of the photon-to-proton efficiency. We show that supercriticalities are possible for the whole range of source parameters related to compact astrophysical sources. We also provide an in-depth look at the physical mechanisms of hadronic supercriticalities and show that magnetized relativistic plasmas are excellent examples of non-linear dynamical systems. (Abstract) Mathews, Grant, et al. Origin of Matter and Space-Time in the Big Bang. AIP Conference Proceedings. 1594, May, 2014. A paper from the Origins of Matter and Evolution of Galaxies 2013 held in November in Tsukuba, Japan by University of Notre Dame, National Astronomical Observatory of Japan, and Soongsil University, Korea astrophysicists. Akin to Wainwright herein, what fantastic abilities do we phenomenal human beings have in and of a self-observing and discovering universe? We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse beyond our horizon. (Abstract excerpts) McCormick, Katie. Particle Physicists Puzzle Over a New Duality. Quanta. August 1, 2022. A science journalist describes a confluence of recent empirical physics findings that infer a certain code-like relation in a gluon phase. A prime investigator Lance Dixon, a Stanford University astro-particle physicist, whose collegial paper is Folding Amplitudes into Form Factors: An Antipodal Duality in Physical Review Letters (128/111602, 2022). Dixon was joined by Anastasia Volovich and others which led to a “letters” identity for a particle’s energy and momentum. Our interest is how readily a genetic view is adopted so to consider that some similar correspondence might be going on. A hidden link has been found between two seemingly unrelated particle collision outcomes. It’s the latest example of a mysterious web of mathematical connections between disparate theories of physics. McGaugh, Stacy, et al. Dynamical Regularities in Galaxies. arXiv:1090.02011. Case Western Reserve University, European Southern Observatory, Munich, and University of Oregon astrophysicists post a chapter to appear in the IAU Symposium 353 (Shanghai, June 2019) volume Galactic Dynamics in the Era of Large Surveys. Galaxies are observed to obey a strict set of dynamical scaling relations. We review these relations for rotationally supported disk galaxies spanning many decades in mass, surface brightness, and gas content. The behavior of these widely varied systems can be summarized with a handful of empirical laws connected by a common acceleration scale. (Abstract) Mekjian, Aram. Generalized Statistical Models of Voids and Hierarchical Structure in Cosmology. Astrophysical Journal. 655/1, 2007. Wherein the presence of scale-free, power-law geometries for distributions of galaxies is described. Milekhin, Alexey, et al. Observable and computable entanglement in time... arXiv:2502.12240. We include this entry by Institute for Quantum Information and Matter, California Institute of Technology physicists led by John Preskill to record how this prime feature of nature’s deepest phase has become a key significance to quantum computers. Visit the CalTech site below for a full description. But in its materialist mode, a nonlocality between particles over any distance remains inexplicable. Yet if one might now allow a wholly organic, embodied, personal milieu such sensory physiological relativity becomes possible. (As a note, I heard John Bell speak in person at Amherst College in 1990 and recall him softly saying What does it mean that there is something called “quantum” and we are here?) We propose a novel family of entanglement measures for time-separated subsystems. For relativistic quantum field theories our definition agrees with the analytic continuation from space-like to time-like regions. We provide measurement protocols for the IBM quantum device ibm_sherbrooke for a simple qubit system. (Excerpt) Montani, Giovanni, et al. Primordial Cosmology. Singapore: World Scientific, 2011. A 600 page comprehensive volume by University of Rome, Centre of Theoretical Physics, Marseille, and University of London, physicists that courses from Historical Notions to the latest Physical, Mathematical, and Quantum Cosmologies. A 2009 book with the same title by Patrick Peter and Jean-Philippe Uzan (Oxford) covers similar material in a more technical way. Primordial Cosmology deals with one of the most puzzling and fascinating topics debated in modern physics — the nature of the Big Bang singularity. The authors provide a self-consistent and complete treatment of the very early Universe dynamics, passing through a concise discussion of the Standard Cosmological Model, a precise characterization of the role played by the theory of inflation, up to a detailed analysis of the anisotropic and inhomogeneous cosmological models. The most peculiar feature of this book is its uniqueness in treating advanced topics of quantum cosmology with a well-traced link to more canonical and pedagogical notions of fundamental cosmology. (Publisher)
Previous 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 Next [More Pages]
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||
HOME |
TABLE OF CONTENTS |
Introduction |
GENESIS VISION |
LEARNING PLANET |
ORGANIC UNIVERSE |