(logo) Natural Genesis (logo text)
A Sourcebook for the Worldwide Discovery of a Creative Organic Universe
Table of Contents
Genesis Vision
Learning Planet
Organic Universe
Earth Life Emerge
Genesis Future
Recent Additions

III. Ecosmos: A Revolutionary Fertile, Habitable, Solar-Bioplanet Incubator Lifescape

D. Non-Equilibrium Thermodynamics of Living Systems

Tiezzi, Enzo. Steps Toward an Evolutionary Physics. Southampton, UK: WIT Press, 2006. Many scientists today are trying to comprehend and articulate an inherently self-organized emergence of complexity and consciousness. A Professor of Physico-Chemistry at the University of Siena draws on the non-equilibrium thermodynamics of Ilya Prigogine, along with the work of Sven Jorgensen, Robert Ulanowicz, and others, to foster this movement. This stated project of ‘ecodynamics’ is associated with a new international journal of that title.

Tlidi, Mustapha, et al. Dissipative Structures in Matter out of Equilibrium from Chemistry, Photonics and Biology: the Legacy of Ilya Prigogine. Philosophical Transactions of the Royal Society A. Vol. 376/Iss, 2018. An array of papers from a centennial remembrance of the Nobel physical chemist Ilya Prigogine (1917-2003), the prime founder of non-equilibrium thermodynamics, a theoretical revolution to this day. On a personal note, in 1987 at a complexity conference I had lunch with Ilya along with Robert Ulanowicz. Some entries are The Rehabilitation of Irreversible Processes by Rene Lefever, Reducing Nonlinear Dynamical Systems to Canonical Forms, and Dissipative Structures in Biological Systems by Albert Goldbeter.

The idea of this theme issue emerged during the XIV international Workshop on Instabilities and Non-equilibrium Structures, which took place in December 2017 in Valparaiso, Chile. This workshop, organized by the University of Chile and the Pontificia Universidad Catolica de Valparaiso, was dedicated to Ilya Prigogine, who stimulated research in nonlinear physics, non-equilibrium thermodynamics and statistical mechanics. which has been described as the end of the tyranny of equilibrium in thermodynamics. We now have a deeper understanding of the behaviour of matter at equilibrium and out of equilibrium. (Abstract excerpt)

Tsallis, Constantino. Introduction to Nonextensive Statistical Mechanics. Berlin: Springer, 2009. Since the 1980s the Greek-Brazilian director of theoretical physics at the Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, has conceived and developed this advanced version of non-equilibrium thermodynamics. As a recent article Roll Over, Boltzman (Physics World, May 2014, (Cartwright) cites it is seen as extending the work of Ilya Prigogine in this open system realm with good success and application. While couched in arcane terms and highly mathematical, its mature form provides foundational credence to an innately organic natural genesis from physics to peoples.

The whole theory is based on a single concept, namely the entropy noted Sq which, for the entropic index q equal to unity, reproduces the standard BG entropy, here noted SBG. The traditional functional SBG is said to be additive. Indeed, for a system composed of any two independent subsystems, the entropy SBG of the sum coincides with the sum of the entropies. The entropy Sq violates this property, and is therefore nonadditive. As we see, entropic additivity depends, from its very definition, only on the functional form of the entropy in terms of probabilities. The situation is generically quite different for the thermodynamic concept of extensivity. An entropy of a system or of a subsystem is said extensive if, for a large number N of its elements, the entropy is (asymptotically) proportional to N. Otherwise, it is nonextensive. This is to say, extensivity depends on both the mathematical form of the entropic functional and the correlations possibly existing within the elements of the system. Consequently, for a (sub)system whose elements are either independent or weakly correlated, the additive entropy SBG is extensive, whereas the nonadditive entropy Sq (q _= 1) is nonextensive. (Preface ix)

Ulanowicz, Robert. Ecology: The Ascendent Perspective. New York: Columbia University Press, 1997. After noting the deficiencies of the determinist Newtonian model, a theoretical ecologist describes in its place the inherent propensity of the universe to develop by nested stages toward increasingly aware and purposeful organisms. As a process of “entitification,” this vectorial ascendancy of life can offset the “overhead” of entropic dissipation and can thus be seen as a revival of Aristotle’s formal and final causes.

Wagner, Nathaniel and Addy Pross. The Nature of Stability in Replicating Systems. Entropy. 13/2, 2011. The present dichotomy of an alien, moribund universe which is yet filled with organismic matter from biochemicals to people continues to confound science, blocks and deters a salutary discovery. Here Ben Gurion University chemists propose an additional tendency of non-equilibrium thermodynamic phenomena said to be a “dynamic kinetic stability.” This novel facility is then seen to contribute to the heretofore elusive integration of physical cosmos with its regnant life.

In this review we have attempted to describe the concept of dynamic kinetic stability and how it relates to the traditional and well-established concepts of (static) kinetic stability and thermodynamic stability. We believe that recognizing the existence and nature of this quite distinct stability type can assist in further bridging the physics-biology gap that has troubled physicists for the past century, and assist in placing Darwinian thinking within a broader physicochemical framework. We believe that in doing so one can obtain greater insight into central questions in biology, including the most enduring and controversial one—the nature of the physicochemical principles that could help explain the emergence of life from inanimate matter. (525)

Wicken, Jeffrey. Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford: Oxford University Press, 1987. The late (1942-2002) Penn State University biochemist is credited a quarter century on by Richard Egel, along with Iris Fry, (search both) as an innovative theorist for the evident, necessary unification of living and human systems with nature’s intrinsic dynamical energies and generative programs.

Williams, R. J. P. and J. J. R. Fausto da Silva. Evolution Revisited by Inorganic Chemists. Barrow, John, et al, eds. Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Cambridge: Cambridge University Press, 2007. Flows of informed energy along thermal gradients are seen to inexorably spawn complex multicellularity spanning progressive levels of self-organization. The two quotes give a good gist. By whatever sufficiency could a natural universe to human genesis finally be admitted?

We can now answer the two parts of the question posed by the initiators of this Book. (1) Was life destined to happen in this universe? (2) Was life destined to lead inexorably to greater and greater complexity? Probably, life was destined to happen because it is an effective (and efficient) way to degrade available energy. Once it started, we believe evolution was also inevitable, as an ecosystem would of necessity develop with greater and increasing complexity; but this development is of the ecosystem of organisms plus the environment, not just a development of organisms. The ecosystem evolved in the way it did because of the required chemistry of effective energy capture. (487)

But one species is now different, for its development is due to rational thought, not gene changes, to the degree that it is a separate chemotype. Human activity represents a logical end-point of exploitation of the material elements, of energy, and of life, while remaining dependent on a multitude of other species. However, humankind must be careful. The human species is interventionist in that, through understanding, it can to a large extent dictate ecological evolution with little left to chance, at least in principle. However, restraint in uses of resources must be accepted to sustain a favorable environment for survival of the present ecosystem. (489)

Witting, Lars. Inevitable Evolution: Back to The Origin and Beyond the 20th Century Paradigm of Contingent Evolution by Historical Natural Selection. Biological Reviews. 83/3, 2008. A Greenland Institute of Natural Resources scientist who studies walrus welfare provides an extended document on his theory, considered for over a decade, that an emphasis on selected variety alone misses life’s innate convergent arrow of time, an a priori lawfulness, since open biological systems are ultimately impelled and advanced by thermodynamic energies. With some 300 references, a good summary of how to engage this conceptual shift now underway so as to appreciate an abiding genesis.

For phenotypic characters that are closely linked to fitness I argue that we need a new paradigm of inevitable evolution based on a universal natural selection that unfolds inevitably and a priori from deterministic laws of self-replication, encompasses historical processes, and defines general directions of biotic evolution. A proposed model of selection by energetic state and density-dependent competitive interactions illustrates that the evolutionary unfolding of life-history organization in species on Earth can be explained as arising from first principles of self-replication, predicting that large-scale evolution will follow similar routes on similar planets. (260)

Wolchover, Natalie. First Support for a Physics Theory of Life. Quanta Magazine. Online July, 2017. An update of Jeremy England’s project (search) at MIT (search), with colleagues, to quantify how thermodynamic phenomena might possess an innate propensity for the formation of living, evolutionary systems. The occasion was two new papers: 1. Spontaneous Fine-Tuning to Environment in Many-Species Chemical Reaction Networks with Jordan Horowitz (Proceedings of the National Academy of Sciences 114/7565, 2017), and 2. Self-Organized Resonance during Search of a Diverse Chemical Space with Tai Kachman and Jeremy Owen (Physical Review Letters (119/038001, 2017), which have links in this report. We thus seem to be getting warmer as physical nature becomes more animate via these sophisticated explanations. But there is much to do, Sara Walker comments that an informational quality needs to be factored in for a full survey.

A qualitatively more diverse range of possible behaviors emerge in many-particle systems once external drives are allowed to push the system far from equilibrium; nonetheless, general thermodynamic principles governing nonequilibrium pattern formation and self-assembly have remained elusive, despite intense interest from researchers across disciplines. Here, we use the example of a randomly wired driven chemical reaction network to identify a key thermodynamic feature of a complex, driven system that characterizes the “specialness” of its dynamical attractor behavior. We show that the network’s fixed points are biased toward the extremization of external forcing, causing them to become kinetically stabilized in rare corners of chemical space that are either atypically weakly or strongly coupled to external environmental drives. (1. Significance)

Recent studies of active matter have stimulated interest in the driven self-assembly of complex structures. Phenomenological modeling of particular examples has yielded insight, but general thermodynamic principles unifying the rich diversity of behaviors observed have been elusive. Here, we study the stochastic search of a toy chemical space by a collection of reacting Brownian particles subject to periodic forcing. We observe the emergence of an adaptive resonance in the system matched to the drive frequency, and show that the increased work absorption by these resonant structures is key to their stabilization. Our findings are consistent with a recently proposed thermodynamic mechanism for far-from-equilibrium self-organization. (2. Abstract)

Zenil, Hector, et al. The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy. Entropy. 21/6, 2019. This paper by the Karolinska Institute, Stockholm computational theorists HZ, Narsis Kiani and Jesper Tegner is noted by the voluminous online journal site as among its most popular, because readers (like me) sense the authors are indeed closing on brilliant insights, however couched in technicalities, as the Abstract conveys. Something is really going on by itself as we ever try to get a good read and bead upon it, which may well be our cosmic purpose.

The principle of maximum entropy (Maxent) is often used to obtain prior probability distributions as a method to obtain a Gibbs measure under some restriction giving the probability that a system will be in a certain state compared to the rest of the elements. Here we take advantage of a causal algorithmic calculus to derive a thermodynamic-like result based on how difficult it is to reprogram a computer code. Using the distinction between computable and algorithmic randomness, we quantify the cost in information loss associated with reprogramming. To illustrate this, we apply the algorithmic refinement to Maxent on graphs and introduce a generalized Maximal Algorithmic Randomness Preferential Attachment (MARPA) Algorithm. Our study motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogrammability, and computation. (Abstract excerpt)

Previous   1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9